scholarly journals Deciphering the Proteotoxic Stress Responses Triggered by the Perturbed Thylakoid Proteostasis in Arabidopsis

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 519
Author(s):  
Kenji Nishimura ◽  
Reiko Nakagawa ◽  
Chisato Hachisuga ◽  
Yuri Nakajima Munekage

Here, we explored heat dependent thylakoid FtsH protease substrates and investigated proteotoxicity induced by thermal damage and processive protease dysfunction on the thylakoid membrane. Through our thylakoid enriched proteome analysis and biochemical experiments, carbonylated stromal proteins were suggested as possible FtsH targets. Furthermore, we observed in the thylakoid fractions in the absence of FtsH stromal reactive oxygen species-detoxifying enzymes, as well as heat shock proteins and chaperones, which are known to be upregulated at the transcriptional level when this protease is absent, which is called the damaged protein response, resembling unfolded protein response in eukaryotic cells. Interestingly, the thylakoid-enriched high-density fractions included stromal translation factors and RNA-binding proteins, along with aminoacyl-tRNA synthetase, reminiscent of the formation of stress granules. Unexpectedly, extraplastid proteins such as mitochondrial chaperones, peroxidase, tricarboxylic acid cycle and respiratory chain enzymes, as well as cytosolic ribosomes, translation factors, heat shock proteins, antioxidants and metabolic enzymes, were also found deposited in the high-density fractions depending on the loss of thylakoid FtsH, with more prominent effects of thermal stress on the cytosolic proteins. This may reflect intracellular adaptation to the proteotoxic influences from the organelle.

1990 ◽  
Vol 10 (4) ◽  
pp. 1622-1632 ◽  
Author(s):  
D E Stone ◽  
E A Craig

To determine whether the 70-kilodalton heat shock proteins of Saccharomyces cerevisiae play a role in regulating their own synthesis, we studied the effect of overexpressing the SSA1 protein on the activity of the SSA1 5'-regulatory region. The constitutive level of Ssa1p was increased by fusing the SSA1 structural gene to the GAL1 promoter. A reporter vector consisting of an SSA1-lacZ translational fusion was used to assess SSA1 promoter activity. In a strain producing approximately 10-fold the normal heat shock level of Ssa1p, induction of beta-galactosidase activity by heat shock was almost entirely blocked. Expression of a transcriptional fusion vector in which the CYC1 upstream activating sequence of a CYC1-lacZ chimera was replaced by a sequence containing a heat shock upstream activating sequence (heat shock element 2) from the 5'-regulatory region of SSA1 was inhibited by excess Ssa1p. The repression of an SSA1 upstream activating sequence by the SSA1 protein indicates that SSA1 self-regulation is at least partially mediated at the transcriptional level. The expression of another transcriptional fusion vector, containing heat shock element 2 and a lesser amount of flanking sequence, is not inhibited when Ssa1p is overexpressed. This suggests the existence of an element, proximal to or overlapping heat shock element 2, that confers sensitivity to the SSA1 protein.


1990 ◽  
Vol 10 (4) ◽  
pp. 1622-1632
Author(s):  
D E Stone ◽  
E A Craig

To determine whether the 70-kilodalton heat shock proteins of Saccharomyces cerevisiae play a role in regulating their own synthesis, we studied the effect of overexpressing the SSA1 protein on the activity of the SSA1 5'-regulatory region. The constitutive level of Ssa1p was increased by fusing the SSA1 structural gene to the GAL1 promoter. A reporter vector consisting of an SSA1-lacZ translational fusion was used to assess SSA1 promoter activity. In a strain producing approximately 10-fold the normal heat shock level of Ssa1p, induction of beta-galactosidase activity by heat shock was almost entirely blocked. Expression of a transcriptional fusion vector in which the CYC1 upstream activating sequence of a CYC1-lacZ chimera was replaced by a sequence containing a heat shock upstream activating sequence (heat shock element 2) from the 5'-regulatory region of SSA1 was inhibited by excess Ssa1p. The repression of an SSA1 upstream activating sequence by the SSA1 protein indicates that SSA1 self-regulation is at least partially mediated at the transcriptional level. The expression of another transcriptional fusion vector, containing heat shock element 2 and a lesser amount of flanking sequence, is not inhibited when Ssa1p is overexpressed. This suggests the existence of an element, proximal to or overlapping heat shock element 2, that confers sensitivity to the SSA1 protein.


1991 ◽  
Vol 11 (12) ◽  
pp. 5937-5944 ◽  
Author(s):  
J Amin ◽  
R Mestril ◽  
R Voellmy

Genes for small heat shock proteins (hsp27 to hsp22) are activated in late third-instar larvae of Drosophila melanogaster in the absence of heat stress. This regulation has been simulated in cultured Drosophila cells in which the genes are activated by the addition of ecdysterone. Sequence elements (HERE) involved in ecdysterone regulation of the hsp27 and hsp23 genes have been defined by transfection studies and have recently been identified as binding sites for ecdysterone receptor. We report here that the hsp27 and hsp23 genes are regulated differently by ecdysterone. The hsp27 gene is activated rapidly by ecdysterone, even in the absence of protein synthesis. In contrast, high-level expression of the hsp23 gene begins only after a lag of about 6 h, is dependent on the continuous presence of ecdysterone, and is sensitive to low concentrations of protein synthesis inhibitors. Transfection experiments with reporter constructs show that this difference in regulation is at the transcriptional level. Synthetic hsp27 or hsp23 HERE sequences confer hsp27- or hsp23-type ecdysterone regulation on a basal promoter. These findings indicate that the hsp27 gene is a primary, and the hsp23 gene is mainly a secondary, hormone-responsive gene. Ecdysterone receptor is implied to play a role in the regulation of both genes.


1991 ◽  
Vol 11 (12) ◽  
pp. 5937-5944
Author(s):  
J Amin ◽  
R Mestril ◽  
R Voellmy

Genes for small heat shock proteins (hsp27 to hsp22) are activated in late third-instar larvae of Drosophila melanogaster in the absence of heat stress. This regulation has been simulated in cultured Drosophila cells in which the genes are activated by the addition of ecdysterone. Sequence elements (HERE) involved in ecdysterone regulation of the hsp27 and hsp23 genes have been defined by transfection studies and have recently been identified as binding sites for ecdysterone receptor. We report here that the hsp27 and hsp23 genes are regulated differently by ecdysterone. The hsp27 gene is activated rapidly by ecdysterone, even in the absence of protein synthesis. In contrast, high-level expression of the hsp23 gene begins only after a lag of about 6 h, is dependent on the continuous presence of ecdysterone, and is sensitive to low concentrations of protein synthesis inhibitors. Transfection experiments with reporter constructs show that this difference in regulation is at the transcriptional level. Synthetic hsp27 or hsp23 HERE sequences confer hsp27- or hsp23-type ecdysterone regulation on a basal promoter. These findings indicate that the hsp27 gene is a primary, and the hsp23 gene is mainly a secondary, hormone-responsive gene. Ecdysterone receptor is implied to play a role in the regulation of both genes.


1986 ◽  
Vol 32 (6) ◽  
pp. 516-521 ◽  
Author(s):  
Kirk L. McCallum ◽  
John J. Heikkila ◽  
William E. Inniss

The patterns of proteins synthesized by the arctic psychrophilic bacterium Res-10 and the psychrotroph Bacillus psychrophilus during various heat shocks up to 32 °C were examined. Both microorganisms were found to display temperature-dependent patterns of heat shock protein synthesis. Elevation of the incubation temperature of the arctic psychrophile from 0 to 15, 20, 25, or 32 °C induced the synthesis of at least 19 heat shock proteins. Imposing similar heat shock upon cells of the psychrotroph resulted in the induction of at least 25 heat shock proteins. Examination of the effect of the transcriptional inhibitor rifampicin on the synthesis of heat shock proteins revealed that the primary control of heat shock protein synthesis lies at the transcriptional level in both microorganisms.


1995 ◽  
Vol 310 (1) ◽  
pp. 225-232 ◽  
Author(s):  
S Brandau ◽  
A Dresel ◽  
J Clos

We have analysed the transcription of three heat-shock genes, HSP70, HSP83 and ClpB, in the protozoan parasite Leishmania. All three heat-shock genes are transcribed constitutively and not heat-inducibly. However, we find that two major heat-shock proteins, HSP70 and HSP83, are synthesized at elevated rates during heat stress. We conclude that the cellular stress response in Leishmaniae is regulated exclusively on a post-transcriptional level much in contrast with all other eukaryotes examined so far. The induced synthesis of HSP70 and HSP83, however, does not increase the steady-state level of either protein significantly. This is compensated by high constitutive levels of both proteins: HSP70 and HSP83 make up 2.1% and 2.8%, respectively, of the total protein in unstressed Leishmania promastigotes. Also, HSP70 is a strictly cytoplasmic protein in Leishmania and does not relocate into the nucleus during heat stress, as it does in other eukaryotes examined in the past.


Sign in / Sign up

Export Citation Format

Share Document