scholarly journals Dissecting the Genetic Basis of Flowering Time and Height Related-Traits Using Two Doubled Haploid Populations in Maize

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1585
Author(s):  
Lei Du ◽  
Hao Zhang ◽  
Wangsen Xin ◽  
Kejun Ma ◽  
Dengxiang Du ◽  
...  

In the field, maize flowering time and height traits are closely linked with yield, planting density, lodging resistance, and grain fill. To explore the genetic basis of flowering time and height traits in maize, we investigated six related traits, namely, days to anthesis (AD), days to silking (SD), the anthesis–silking interval (ASI), plant height (PH), ear height (EH), and the EH/PH ratio (ER) in two locations for two years based on two doubled haploid (DH) populations. Based on the two high-density genetic linkage maps, 12 and 22 quantitative trait loci (QTL) were identified, respectively, for flowering time and height-related traits. Of these, ten QTLs had overlapping confidence intervals between the two populations and were integrated into three consensus QTLs (qFT_YZ1a, qHT_YZ5a, and qHT_YZ7a). Of these, qFT_YZ1a, conferring flowering time, is located at 221.1–277.0 Mb on chromosome 1 and explained 10.0–12.5% of the AD and SD variation, and qHT_YZ5a, conferring height traits, is located at 147.4–217.3 Mb on chromosome 5 and explained 11.6–15.3% of the PH and EH variation. These consensus QTLs, in addition to the other repeatedly detected QTLs, provide useful information for further genetic studies and variety improvements in flowering time and height-related traits.

2021 ◽  
Vol 13 (12) ◽  
pp. 6876
Author(s):  
Yuetao Zuo ◽  
Xueyue Zhang ◽  
Shiyu Zuo ◽  
Xiaosong Ren ◽  
Zhaoyue Liu ◽  
...  

In response to the production crisis caused by a winter feed shortage due to the rapid development of the animal husbandry industry, winter rye 001 was selected to study differences in stalk and senescence characteristics in yield formation in cold regions. Five density treatments were established in a randomized design as 225 × 104 plant·hm−2 (D1), 275 × 104 plant·hm−2 (D2), 325 × 104 plant·hm−2 (D3), 375 × 104 plant·hm−2 (D4), and 425 × 104 plant·hm−2 (D5). Stem characteristics, SOD activity, POD activity, MDA content, and differences in yield and feeding quality under different population densities were analyzed. The plant height, center of gravity, and stem basal internode length showed an increasing trend with an increase in planting density. The stem wall thickness, diameter, strength, and lodging resistance indices decreased. At 275 × 104 plants·hm−2, the rye crude protein content was the highest while neutral washing fiber and acid washing fiber were the lowest, and feed quality was the best. With an increase in density, spike number, grain number per spike, and thousand-grain weight first increased and then decreased. We concluded that the yield and feeding quality were best when the basic seedling was at 275 × 104 plants hm−2.


2021 ◽  
Vol 20 (8) ◽  
pp. 2077-2089
Author(s):  
Bin LI ◽  
Fei GAO ◽  
Bai-zhao REN ◽  
Shu-ting DONG ◽  
Peng LIU ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1369
Author(s):  
Dan-Dan Zhao ◽  
Ju-Hyeong Son ◽  
Muhammad Farooq ◽  
Kyung-Min Kim

Internode length and stem diameter are the primary traits affecting the lodging resistance of rice. Traits related to the length of the panicle (LP), uppermost internode (LUI), second internode (LSI), third internode (LTI), fourth internode (LFI), lowest internode (LLI) as well as stem diameter at the uppermost internode (SDUI), second internode (SDSI), third internode (SDTI), fourth internode (SDFI), and lowest internode (SDLI) in 120 Cheongcheong/Nagdong doubled haploid population were investigated using a quantitative trait locus (QTL) analysis. Thirty-four QTL regions affected LP and the length of each internode. Twenty-six QTL regions were associated with the stem diameter of each internode. RM12285-RM212 on chromosome 1 contained 10 QTLs related to the internode length, which have overlapped for over 2 years. Twenty-three candidate genes were screened using mark interval. Among the candidate genes, Os01g0803900, named OsCYPq1, which is in the Cytochrome P450 family, might be involved in gibberellins (GA) synthesis. GA is an essential plant growth regulator that affects plant height. OsCYPq1 catalyzes oxidation steps in the middle part of the GA pathway. OsCYPq1 is expected to provide valuable information to improve the marker assessment for target traits and QTL gene cloning in rice.


Crop Science ◽  
2018 ◽  
Vol 58 (6) ◽  
pp. 2613-2622 ◽  
Author(s):  
Yuhong Gao ◽  
Hanyu Jiang ◽  
Bing Wu ◽  
Junyi Niu ◽  
Yajiao Li ◽  
...  

2020 ◽  
Vol 47 (No. 1) ◽  
pp. 45-52
Author(s):  
Emina Mladenović ◽  
Sandra Cvejić ◽  
Siniša Jocić ◽  
Nemanja Ćuk ◽  
Jelena Čukanović ◽  
...  

The aim of this research was to determine the optimum planting density for the production of high-quality cut flowers with desirable characteristics. 25 single-stem ornamental sunflower genotypes were planted at different densities and evaluated for flowering time, flower diameter, and stem circumference and length over a two-year production cycle. Three spacing patterns were used: 25 × 25 cm, 30 × 30 cm, and 70 × 30 cm, which led to the planting densities of 160 000, 90 000, and 60 000 plants/ha, respectively. The plant density had the most important effect on the stem circumference, flower diameter, and stem length (total variation 52, 60, and 58%, AMMI analysis) and a small effect on the flowering time (total variation 1%, AMMI analysis). Based on environment-focused scaling, all high-density environments could be suitable for the production of single-stem sunflower genotypes. The results demonstrated the adaptation of several sunflower genotypes G9, G11, G12, G21, and G22 as the most suitable based on the optimum flower diameter, stem circumference, and stem length. These results may lead to progress in growing ornamental sunflowers as a cut flower.


2021 ◽  
Vol 12 ◽  
Author(s):  
Adnan Noor Shah ◽  
Mohsin Tanveer ◽  
Asad Abbas ◽  
Mehmet Yildirim ◽  
Anis Ali Shah ◽  
...  

High plant density is considered a proficient approach to increase maize production in countries with limited agricultural land; however, this creates a high risk of stem lodging and kernel abortion by reducing the ratio of biomass to the development of the stem and ear. Stem lodging and kernel abortion are major constraints in maize yield production for high plant density cropping; therefore, it is very important to overcome stem lodging and kernel abortion in maize. In this review, we discuss various morphophysiological and genetic characteristics of maize that may reduce the risk of stem lodging and kernel abortion, with a focus on carbohydrate metabolism and partitioning in maize. These characteristics illustrate a strong relationship between stem lodging resistance and kernel abortion. Previous studies have focused on targeting lignin and cellulose accumulation to improve lodging resistance. Nonetheless, a critical analysis of the literature showed that considering sugar metabolism and examining its effects on lodging resistance and kernel abortion in maize may provide considerable results to improve maize productivity. A constructive summary of management approaches that could be used to efficiently control the effects of stem lodging and kernel abortion is also included. The preferred management choice is based on the genotype of maize; nevertheless, various genetic and physiological approaches can control stem lodging and kernel abortion. However, plant growth regulators and nutrient application can also help reduce the risk for stem lodging and kernel abortion in maize.


2019 ◽  
Vol 22 (4) ◽  
pp. 546-553
Author(s):  
Ichiro Nagaoka ◽  
Hideki Sasahara ◽  
Kei Matsushita ◽  
Hideo Maeda ◽  
Shuichi Fukuoka ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 734 ◽  
Author(s):  
Bharti Sharma ◽  
Timothy A. Batz ◽  
Rakesh Kaundal ◽  
Elena M. Kramer ◽  
Uriah R. Sanders ◽  
...  

Reproductive success in plants is dependent on many factors but the precise timing of flowering is certainly among the most crucial. Perennial plants often have a vernalization or over-wintering requirement in order to successfully flower in the spring. The shoot apical meristem undergoes drastic developmental and molecular changes as it transitions into inflorescence meristem (IM) identity, which then gives rise to floral meristems (FMs). In this study, we have examined the developmental and gene expression changes underlying the transition from the vegetative to reproductive phases in the basal eudicot Aquilegia coerulea, which has evolved a vernalization response independently relative to other established model systems. Results from both our histology and scanning electron studies demonstrate that developmental changes in the meristem occur gradually during the third and fourth weeks of vernalization. Based on RNAseq data and cluster analysis, several known flowering time loci, including AqFT and AqFL1, exhibit dramatic changes in expression during the fourth week. Further consideration of candidate gene homologs as well as unexpected loci of interest creates a framework in which we can begin to explore the genetic basis of the flowering time transition in Aquilegia.


Sign in / Sign up

Export Citation Format

Share Document