scholarly journals Combating Dual Challenges in Maize Under High Planting Density: Kernel Abortion and Stem Lodging

2021 ◽  
Vol 12 ◽  
Author(s):  
Adnan Noor Shah ◽  
Mohsin Tanveer ◽  
Asad Abbas ◽  
Mehmet Yildirim ◽  
Anis Ali Shah ◽  
...  

High plant density is considered a proficient approach to increase maize production in countries with limited agricultural land; however, this creates a high risk of stem lodging and kernel abortion by reducing the ratio of biomass to the development of the stem and ear. Stem lodging and kernel abortion are major constraints in maize yield production for high plant density cropping; therefore, it is very important to overcome stem lodging and kernel abortion in maize. In this review, we discuss various morphophysiological and genetic characteristics of maize that may reduce the risk of stem lodging and kernel abortion, with a focus on carbohydrate metabolism and partitioning in maize. These characteristics illustrate a strong relationship between stem lodging resistance and kernel abortion. Previous studies have focused on targeting lignin and cellulose accumulation to improve lodging resistance. Nonetheless, a critical analysis of the literature showed that considering sugar metabolism and examining its effects on lodging resistance and kernel abortion in maize may provide considerable results to improve maize productivity. A constructive summary of management approaches that could be used to efficiently control the effects of stem lodging and kernel abortion is also included. The preferred management choice is based on the genotype of maize; nevertheless, various genetic and physiological approaches can control stem lodging and kernel abortion. However, plant growth regulators and nutrient application can also help reduce the risk for stem lodging and kernel abortion in maize.

Author(s):  
Guotao Yang ◽  
Xuechun Wang ◽  
Farhan Nabi ◽  
Hongni Wang ◽  
Changkun Zhao ◽  
...  

AbstractThe architecture of rice plant represents important and complex agronomic traits, such as panicles morphology, which directly influence the microclimate of rice population and consequently grain yield. To enhance yield, modification of plant architecture to create new hybrid cultivars is considered a sustainable approach. The current study includes an investigation of yield and microclimate response index under low to high plant density of two indica hybrid rice R498 (curved panicles) and R499 (erect panicles), from 2017 to 2018. The split-plot design included planting densities of 11.9–36.2 plant/m2. The results showed that compared with R498, R499 produced a higher grain yield of 8.02–8.83 t/ha at a higher planting density of 26.5–36.2 plant/m2. The response index of light intensity and relative humidity to the planting density of R499 was higher than that of R498 at the lower position of the rice population. However, the response index of temperature to the planting density of R499 was higher at the upper position (0.2–1.4%) than at the lower position. Compared with R498, R499 at a high planting density developed lower relative humidity (78–88%) and higher light intensity (9900–15,916 lx) at the lower position of the rice population. Our finding suggests that erect panicles are highly related to grain yield microclimatic contributors under a highly dense rice population, such as light intensity utilization, humidity, and temperature. The application of erect panicle rice type provides a potential strategy for yield improvement by increasing microclimatic conditions in rice.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 232
Author(s):  
Nangial Khan ◽  
Fangfang Xing ◽  
Lu Feng ◽  
Zhanbiao Wang ◽  
Minghua Xin ◽  
...  

The number of cotton plants grown per unit area has recently gained attention due to technology expense, high input, and seed cost. Yield consistency across a series of plant populations is an attractive cost-saving option. Field experiments were conducted to compare biomass accumulation, fiber quality, leaf area index, yield and yield components of cotton planted at various densities (D1, 1.5; D2, 3.3; D3, 5.1; D4, 6.9; D5, 8.7; and D6, 10.5 plants m−2). High planting density (D5) produced 21% and 28% more lint yield as compared to low planting density (D1) during both years, respectively. The highest seed cotton yield (4662 kg/ha) and lint yield (1763 kg/ha) were produced by high plant density (D5) while the further increase in the plant population (D6) decreased the yield. The increase in yield of D5 was due to more biomass accumulation in reproductive organs as compared to other treatments. The highest average (19.2 VA gm m−2 d−1) and maximum (21.8 VM gm m−2 d−1) rates of biomass were accumulated in reproductive structures. High boll load per leaf area and leaf area index were observed in high planting density as compared to low, while high dry matter partitioning was recorded in the lowest planting density as compared to other treatments. Plants with low density had 5% greater fiber length as compared to the highest plant density, while the fiber strength and micronaire value were 10% and 15% greater than the lowest plant density. Conclusively, plant density of 8.7 plants m−2 is a promising option for enhanced yield, biomass, and uniform fiber quality of cotton.


2019 ◽  
Vol 50 (Special) ◽  
Author(s):  
Shenawa & Alfalahi

Methylation Sensitive Amplification Polymorphism (MSAP) was used to characterize the alterations in DNA methylation in maize (Zea mays L.) inbred lines and their half-daillels affected by plant densities (213333 plant h-1 and 13333 plant h-1). The two restriction was enzymes ( HpaII and MspI) succeeded in diagnosing a total of 23 specific loci, most of (22 loci) were Methylation Sensitive Loci (MSL), while the only one NML (No Methylated Loci) was monomorphic. Thirteen out of 22 MSL loci polymorphic, recording a were polymorphism percentage of 59%. Results of FeSOD gene expression cleared the different response of maize inbreds and hybrids to high plant density stress. Generally, the expression of  the targeted gene was increased in plants submitted to high plant density stress compared with low density. The inbred 3 and its single hybrid 1×3 achieved the highest level of gene expression under high planting density (5505.7 and 21098.6 copy, respectively), meanwhile, inbred 5 and it's single hybrid 4×5 gained the maximum level of FeSOD expression at the low plant density (8317.6 and 6862.1 copy, respectively). The response reached to its maximum limit in many of those genotypes, some other genotypes showed relatively steady performance along with higher stress, such as parent 1, that gave the lowest number of gene copies in both, high and low plant density (1375.8 and 1569.5 copy, respectively).


HortScience ◽  
2021 ◽  
Vol 56 (2) ◽  
pp. 286-290
Author(s):  
Ravneet K. Sandhu ◽  
Nathan S. Boyd ◽  
Lincoln Zotarelli ◽  
Shinsuke Agehara ◽  
Natalia Peres

Florida vegetable growers are facing high production costs due to high input costs, lower profitability, and competition from foreign markets. Multi/intercropping allows growers to increase the yields and profits per unit area by producing multiple crops on the same beds. Experiments determining the effects of intercropping and plant spacing was conducted in Fall 2018 and 2019 at Gulf Coast Research and Education Center, Balm. Tomato and bell pepper were intercropped at low and high planting density on plastic-covered beds. Bell pepper shoot biomass was significantly (P < 0.001) reduced when intercropped with tomato, compared with monocropped bell pepper. However, tomato shoot biomass was significantly reduced when tomato plant density increased, but it was unaffected by bell pepper intercropping. Biomass of both crops was unaffected by relay cropping. Bell pepper yields when intercropped with tomato at low density (60 cm tomato-tomato and 38 cm pepper-pepper) had similar yields to bell pepper planted alone in low and high planting density. We concluded that bell pepper plants were more sensitive to interspecific competition, whereas tomato plants were more sensitive to intraspecific competition. Intercropping may be a viable option for growers at recommended plant densities used for monocrops. However, high plant density is not recommended.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 97
Author(s):  
Feng Wang ◽  
Jun Xue ◽  
Ruizhi Xie ◽  
Bo Ming ◽  
Keru Wang ◽  
...  

Determining the water productivity of maize is of great significance for ensuring food security and coping with climate change. In 2018 and 2019, we conducted field trials in arid areas (Changji), semi-arid areas (Qitai) and semi-humid areas (Xinyuan). The hybrid XY335 was selected for the experiment, the planting density was 12.0 × 104 plants ha−1, and five irrigation amounts were set. The results showed that yield, biomass, and transpiration varied substantially and significantly between experimental sites, irrigation and years. Likewise, water use efficiency (WUE) for both biomass (WUEB) and yield (WUEY) were affected by these factors, including a significant interaction. Normalized water productivity (WP*) of maize increased significantly with an increase in irrigation. The WP* for film mulched drip irrigation maize was 37.81 g m−2 d−1; it was varied significantly between sites and irrigation or their interaction. We conclude that WP* differs from the conventional parameter for water productivity but is a useful parameter for assessing the attainable rate of film-mulched drip irrigation maize growth and yield in arid areas, semi-arid areas and semi-humid areas. The parametric AquaCrop model was not accurate in simulating soil water under film mulching. However, it was suitable for the prediction of canopy coverage (CC) for most irrigation treatments.


2021 ◽  
Vol 911 (1) ◽  
pp. 012046
Author(s):  
Suwardi ◽  
Syafruddin ◽  
Muhammad Aqil ◽  
Roy Efendi ◽  
Z. Bunyamin

Abstract One of the strategies to increase maize production is by selecting the proper combination among variety and planting density. The plant density population experiment was carried out to identify the candidate of maize variety that has high productivity with limited sunlight levels. Our hypothesis was how the erect leaf maize type can get optimal sunlight and affect the productivity. The study was conducted in IP2TP Bajeng, Gowa, South Sulawesi from March to June 2020. This study was designed under split plot design where spacing or plant density as the main plot with 3 levels of treatment (70 cm x 20 cm (population 71,428 plants/ha), 60 cm x 20 cm (population 83,333 plants/ha) and 50 cm x 20 cm (population 100,000 plants/ha). Furthermore, eight genotypes of hybrid maize (ERC 01, ERC 02, ERC 03, ERC 04, ERC 05, ERC 06, ERC 07, ERC 08), including control varieties (JH 45 and Pioneer 36) were treated as the sub-plots. The results indicated that the maize yield increase in line with the increase in plant population. The plant’s spacing of 70 x 20 cm with 100,000 plants/ha was produced 10.61 t/ha, significantly higher than other treatments.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1452
Author(s):  
Fang Xu ◽  
Bin Wang ◽  
Chuan He ◽  
De Li Liu ◽  
Puyu Feng ◽  
...  

We used the APSIM-Maize model to simulate maize potential yield (Yp) and rain-fed yield (Yw) when adaptation options of sowing date and planting density were adopted under Representative Concentration Pathway (RCP) 4.5 and 8.5 in the Guanzhong Plain of China. The results showed that Yp would decrease by 10.6–14.9% and 15.0–31.4% under RCP4.5 and RCP8.5 for summer maize, and 13.9–19.7% and 18.5–36.3% for spring maize, respectively. The Yw would decrease by 17.1–19.0% and 23.6–41.1% under RCP4.5 and RCP8.5 for summer maize, and 20.9–24.5% and 27.8–45.5% for spring maize, respectively. The loss of Yp and Yw could be reduced by 2.6–9.7% and 0–9.9%, respectively, under future climate for summer maize through countermeasures. For spring maize, the loss of Yp was mitigated by 14.0–25.0% and 2.0–21.8% for Yw. The contribution of changing sowing date and plant density on spring maize yield was more than summer maize, and the optimal adaptation options were more effective for spring maize. Additionally, the influences of changing sowing date and planting density on yields become weak as climate changes become more severe. Therefore, it is important to investigate the potential of other adaptation measures to cope with climate change in the Guanzhong Plain of China.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Jinsheng Yang ◽  
Wenjie Geng ◽  
Jiwang Zhang ◽  
Baizhao Ren ◽  
Lichun Wang

The appropriate increase of planting densities is the key to the obtainment of high-yield maize (Zea mays L.). However, lodging is a major constraint to limit grain yield under increased planting density in present maize production. Effects of population density on stalk lodging and agronomic traits were investigated using two maize cultivars Denghai 618 (DH618, low stalk with low spike height) and Xianyu335 (XY335, high stalk with high spike height). Four levels of density treatment were imposed by 1.5, 6.0, 7.5, and 9.0 × 104 plants ha−1. Results showed that bending strength, rind penetration strength, maximum bending strength, dry weight, and internode diameter of maize were significantly decreased with the increase of planting density. The change range of XY335 with the increase of planting density was significantly larger than that of DH618, showing a high sensitivity to planting density. In addition, the thickness of cortex and vascular bundle sclerenchyma cells was significantly reduced with the increase of planting density. Compared with 1.5 × 104 plants ha−1, the thickness of the above-ground third internode stem cortex was decreased by 9.64%, 12.72%, and 20.77% for DH618, and 19.26%, 30.49%, and 37.45% for XY335 at 6.0, 7.5, and 9.0 × 104 plants ha−1, respectively. The thickness of vascular bundle sclerenchyma cells at 1.5 × 104 plants ha−1 was decreased by 7.75%, 12.44%%, and 17.89% for DH618, 10.18%, 15.21%, and 24.73% for XY335, compared to those at 6.0, 7.5, and 9.0 × 104 plants ha−1, respectively. Visibly, with the increase of planting density, the thickness of cortex and vascular bundle sclerenchyma cells, and the number of vascular bundles were all significantly decreased, resulting in the increase of lodging rate. However, the extent of variation in these parameters for short-plant height hybrid was less than those for high-plant height hybrid, and the yield of short-plant height hybrid was greater than that of high-plant height hybrid, indicating that short-plant height hybrid has better resistance to lodging with higher yield at higher planting density. Therefore, lodging resistance and yield can be improved through selection and breeding strategies that achieving synergistic development of diameter, dry weight per unit, and cortex thickness in maize basal internodes.


2013 ◽  
pp. 13-16
Author(s):  
Zsófia Becze

The experiment was set up with eight maize hybrids with different genetic characteristics in 2012. In our study were included hybrids with different length of growing season. We studied the effect of NKP fertilization and plant density on the yield. Comparing to controll treatment it was found that highest yield was at N40+PK treatment. It was three times higher than agro-ecological optimum. Due to the droughty year the effect of plant density it was minimum. The development rate in case of sowing date I. and II. showed an almost identical picture in the scope of the sowing date trial. However, hybrids with excellent adaptability were capable of a yield above average even in this extreme year.


2021 ◽  
Vol 11 (11) ◽  
pp. 4995
Author(s):  
Marco Custódio ◽  
Paulo Cartaxana ◽  
Sebastián Villasante ◽  
Ricardo Calado ◽  
Ana Isabel Lillebø

Halophytes are salt-tolerant plants that can be used to extract dissolved inorganic nutrients from saline aquaculture effluents under a production framework commonly known as Integrated Multi-Trophic Aquaculture (IMTA). Halimione portulacoides (L.) Aellen (common name: sea purslane) is an edible saltmarsh halophyte traditionally consumed by humans living near coastal wetlands and is considered a promising extractive species for IMTA. To better understand its potential for IMTA applications, the present study investigates how artificial lighting and plant density affect its productivity and capacity to extract nitrogen and phosphorous in hydroponic conditions that mimic aquaculture effluents. Plant growth was unaffected by the type of artificial lighting employed—white fluorescent lights vs. blue-white LEDs—but LED systems were more energy-efficient, with a 17% reduction in light energy costs. Considering planting density, high-density units of 220 plants m−2 produced more biomass per unit of area (54.0–56.6 g m−2 day−1) than did low-density units (110 plants m−2; 34.4–37.1 g m−2 day−1) and extracted more dissolved inorganic nitrogen and phosphorus. Overall, H. portulacoides can be easily cultivated hydroponically using nutrient-rich saline effluents, where LEDs can be employed as an alternative to fluorescent lighting and high-density planting can promote higher yields and extraction efficiencies.


Sign in / Sign up

Export Citation Format

Share Document