scholarly journals Essential Oils of Sage, Rosemary, and Bay Laurel Inhibit the Life Stages of Oomycete Pathogens Important in Aquaculture

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1676
Author(s):  
Anđela Miljanović ◽  
Dorotea Grbin ◽  
Dora Pavić ◽  
Maja Dent ◽  
Igor Jerković ◽  
...  

Saprolegnia parasitica, the causative agent of saprolegniosis in fish, and Aphanomyces astaci, the causative agent of crayfish plague, are oomycete pathogens that cause economic losses in aquaculture. Since toxic chemicals are currently used to control them, we aimed to investigate their inhibition by essential oils of sage, rosemary, and bay laurel as environmentally acceptable alternatives. Gas Chromatography–Mass Spectrometry (GC–MS) analysis showed that the essential oils tested were rich in bioactive volatiles, mainly monoterpenes. Mycelium and zoospores of A. astaci were more sensitive compared to those of S. parasitica, where only sage essential oil completely inhibited mycelial growth. EC50 values (i.e., concentrations of samples at which the growth was inhibited by 50%) for mycelial growth determined by the radial growth inhibition assay were 0.031–0.098 µL/mL for A. astaci and 0.040 µL/mL for S. parasitica. EC50 values determined by the zoospore germination inhibition assay were 0.007–0.049 µL/mL for A. astaci and 0.012–0.063 µL/mL for S. parasitica. The observed inhibition, most pronounced for sage essential oil, could be partly due to dominant constituents of the essential oils, such as camphor, but more likely resulted from a synergistic effect of multiple compounds. Our results may serve as a basis for in vivo experiments and the development of environmentally friendly methods to control oomycete pathogens in aquaculture.

Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79 ◽  
Author(s):  
María Ibáñez ◽  
María Blázquez

The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four compounds accounting for between 97.67–99.66% of the total essential oils were identified by Gas Chromatography-Mass Spectrometry analysis. Winter savory with carvacrol (43.34%) and thymol (23.20%) as the main compounds produced a total inhibitory effect against the seed germination of tested weed. Menthol (48.23%), menthone (23.33%), and iso-menthone (16.33%) from peppermint only showed total seed germination inhibition on L. multiflorum, whereas no significant effects were observed with trans-anethole (99.46%) from anise at all concentrations (0.125–1 µL/mL). Low doses of peppermint essential oil could be used as a sustainable alternative to synthetic agrochemicals to control L. multiflorum. The results corroborate that in vivo assays with a commercial emulsifiable concentrate need higher doses of the essential oils to reproduce previous in vitro trials. The higher in vivo phytotoxicity of winter savory essential oil constitutes an eco-friendly and less pernicious alternative to weed control. It is possible to achieve a greater in vivo phytotoxicity if less active essential oil like peppermint is included with other active excipients.


2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Norazsida Ramli ◽  
Pakeer Oothuman ◽  
Muhammad Taher

Introduction: This study was conducted to evaluate the phytochemical contents and antimalarial properties of the essential oils extracted from the leaves of Malaysian Plectranthus amboinicus in mice infected with Plasmodium berghei. Methods: The essential oils were extracted and prepared by using a steam distillation technique and subjected to phytochemical screening by using gas chromatography–mass spectrometry (GC-MS). The antimalarial activity of different extract doses of the essential oil was tested in vivo in ICR (Instritute of Cancer Research) mice infected with Plasmodium berghei (PZZ1/100) during early, established and residual infections. The control groups were treated with distilled water (containing 10% DMSO, the solvent of the test extracts) and 2 standard drugs: chloroquine and Fansidar. Results: In all, 5 compounds made up 88.34% of total oil and the major chemical compounds were carvacrol (85.14%), thymoquinone (1.65%), terpinen-4-ol (0.70%), octenol (0.62%) and thymol (0.23%). Antimalarial assay showed this essential oil as a potential prophylactic agent with the percentage chemosuppression of 45.23%, 18.28%, 45.38% and 58.26%, while treated with 50, 200, 400 and 1000 µL/kg respectively of essential oil. It also showed a potential as a curative agent with percentage of chemosuppression of 54.10%, 47.35%, 56.75% and 65.38% while treated with the above dose of essential oil. Statistically, no reduction of parasitemia was calculated for suppressive test. Conclusions: The extract has prophylactic and curative effects on P.berghei in mice.


2020 ◽  
Vol 8 (5) ◽  
pp. 654-662
Author(s):  
Tia Vama Etienne ◽  
◽  
Cissé Mohamed ◽  
Allani Sophie Aka Christiane ◽  
◽  
...  

The objective of this study was to evaluate the antifungal activity of Lippia multiflor and Melaleuca leucadendron essential oils against three phytopathogenic fungi (Rhizopus sp., Fusarim sp., and Aspergillus sp.) associated with Ipomea batatas tuberous. Essential oils had been extracted by steam distillation method from leaves of selected plants and their chemical composition was characterized by gas chromatography-mass spectrometry (GC-MS). Essential oil composition characterization was followed by the estimation of percentage mycelial growth inhibition, minimum inhibitory concentration, and minimum fungicidal concentration of the isolated essential oils against the tested pathogens by the Sabouraud dilution medium method. Antifungal activity of different concentrations of isolated essential oils was evaluated by using the microdilution method. The most abundant compounds identified in the M. leucadendron essential oil are 1,8-cineole (38.2%), viridiflorol (13.4%), α-Pinene (12.5%), α-terpineol(9.2%), and geranial (22.8%) while L. multiflora essential oil have neral (18.7%), 1,8-Cineole (11.4%), α-Phellandrene (6.8%), sabinene (3.5%) as active ingredients. The concentration of essential oils which completely inhibited the mycelial growth and spore germination of all the tested pathogen varies and it was reported 0.33µL/mL and 0.66µL/mL for L. multiflora respectively while it was reported 24 µL/mL for M. leucadendron, for both effect, seven days of incubation. The minimum concentration of fungicidal essential oil against Aspergillus sp. was 0.33µL/mL for L. multiflora. The findings of the current study confirm the fungicidal properties of the tested essential oils and their potential use in the management of economically important fungal pathogens of Ipomea batatas. Further, these essential oils can be used as possible alternatives to synthetic fungicides.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1331
Author(s):  
Xing Huang ◽  
Tiantian Liu ◽  
Chunxiang Zhou ◽  
Yulin Huang ◽  
Xing Liu ◽  
...  

Post-harvest diseases of mango reduce fruit quality and cause severe yield losses with completely unmarketable fruits. The most common diseases of mangos are anthracnose (Colletotrichum gloeosporioides). In this study, the antibacterial activities of essential oils from Artemisia scoparia, Artemisia lavandulaefolia, and Artemisia annua against C. gloeosporioides were tested. The results showed that the essential oil of A. scoparia was more effective by the agar diffusion method; the EC50 value was 9.32 µL/mL. The inhibition rate was 100%, at a concentration of 10 μL/mL, through the spore germination method. The morphological changes of the mycelium were observed by scanning electron microscopy (SEM), the mycelia treated with essential oils showed shrinking, deformity, fracture, and dryness through SEM. A. scoparia essential oil was inoculated in vivo and subjected to paroxysm testing under natural conditions. A. scoparia had significantly inhibitory activity, and the inhibition rate was 66.23% in vivo inoculation tests after 10 days. The inhibition rate was 92.06% in the paroxysm test under natural conditions after 15 days. Finally, A. acoparia essential oil was analyzed by gas chromatography-mass spectrometry. The main compounds were 2-ethenyl-Naphthalene (23.5%), 2,4-pentadiynyl-Benzene (11.8%), 1,2-dimethoxy-4-(2-propenyl)-Benzene (10.0%), β-Pinene (8.0%), and 1-methyl-4-(1-methylethyl)-1,4-Cyclohexadiene (6.3%). The results have revealed the potential use of A. scoparia essential oil against post-harvest fungal pathogens C. gloeosporioides.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Norazsida Ramli ◽  
Pakeer Oothuman ◽  
Muhammad Taher

Introduction: This study was conducted to evaluate the phytochemical contents and antimalarial properties of the essential oils extracted from the leaves of Malaysian Plectranthus amboinicus in mice infected with Plasmodium berghei. Methods: The essential oils were extracted and prepared by using a steam distillation technique and subjected to phytochemical screening by using gas chromatography–mass spectrometry (GC-MS). The antimalarial activity of different extract doses of the essential oil was tested in vivo in ICR (Instritute of Cancer Research) mice infected with Plasmodium berghei (PZZ1/100) during early, established and residual infections. The control groups were treated with distilled water (containing 10% DMSO, the solvent of the test extracts) and 2 standard drugs: chloroquine and Fansidar. Results: In all, 5 compounds made up 88.34% of total oil and the major chemical compounds were carvacrol (85.14%), thymoquinone (1.65%), terpinen-4-ol (0.70%), octenol (0.62%) and thymol (0.23%). Antimalarial assay showed this essential oil as a potential prophylactic agent with the percentage chemosuppression of 45.23%, 18.28%, 45.38% and 58.26%, while treated with 50, 200, 400 and 1000 µL/kg respectively of essential oil. It also showed a potential as a curative agent with percentage of chemosuppression of 54.10%, 47.35%, 56.75% and 65.38% while treated with the above dose of essential oil. Statistically, no reduction of parasitemia was calculated for suppressive test. Conclusions: The extract has prophylactic and curative effects on P.berghei in mice.


2013 ◽  
Vol 76 (4) ◽  
pp. 631-639 ◽  
Author(s):  
JORGE GIOVANNY LOPEZ-REYES ◽  
DAVIDE SPADARO ◽  
AMBRA PRELLE ◽  
ANGELO GARIBALDI ◽  
MARIA LODOVICA GULLINO

The antifungal activity of plant essential oils was evaluated as postharvest treatment on stone fruit against brown rot and grey mold rot of stone fruit caused by Monilinia laxa and Botrytis cinerea, respectively. The essential oils from basil (Ocimum basilicum), fennel (Foeniculum sativum), lavender (Lavandula officinalis), marjoram (Origanum majorana), oregano (Origanum vulgare), peppermint (Mentha piperita), rosemary (Rosmarinus officinalis), sage (Salvia officinalis), savory (Satureja montana), thyme (Thymus vulgaris), and wild mint (Mentha arvensis) were tested at two different concentrations on apricots (cv. Kyoto and cv. Tonda di Costigliole), nectarines (cv. Big Top and cv. Nectaross) and plums (cv. Italia and cv. TC Sun). The volatile composition of the essential oils tested was determined by gas chromatography–mass spectrometry analysis. The treatments containing essential oils from oregano, savory, and thyme at 1% (vol/vol) controlled both B. cinerea and M. laxa growing on apricots cv. Tonda di Costigliole and plums cv. Italia and cv. TC Sun; however, the same treatments were phytotoxic for the carposphere of nectarines cv. Big Top and cv. Nectaross. Treatments with 10% (vol/vol) essential oils were highly phytotoxic, notwithstanding their efficacy against the pathogens tested. The essential oils containing as major components α-pinene, p-cymene, carvacrol, and thymol showed similar results on stone fruit, so their antimicrobial activity and the phytotoxicity produced could be based on the concentration of their principal compounds and their synergistic activity. The efficacy of the essential oil treatments on control of fungal pathogens in postharvest depended on the fruit cultivar, the composition and concentration of the essential oil applied, and the length of storage.


Author(s):  
KOUAME Koffi Gaston KOUAME Konan Didier ◽  
KASSI Koffifernand Jean Martial KONE Daouda

Mango anthracnose is one of the most important mango diseases in Côte d'Ivoire. The chemical approach to control this disease is today decried by consumers, because of the pesticide residues left in the fruit. The search for alternative control solutions, that respect the environment and are less polluting is becoming a necessity. Thus, the use of essential oils in the protection of mangoes against fruit pests before and especially after harvest is a promising solution. The present study aimed to reveal the inhibitory efficacy of essential oil of Melaleuca quinquenervia L. and Cymbopogon citratus (D.C) Stapf against Colletotrichum gloeosporioides (Penz.) Penz & Sacc causal agent of mango anthracnose, stored at room temperature. Five doses (100; 200; 500; 1,000 and 2,000 ppm) of each product were tested in vitro on mycelial growth and spore germination of C. gloeosporioides. In vivo, 700 and 1,400 ppm of C. citratus L. and 1,200 and 12,000 ppm of M. quinquenervia L. were tested against anthracnose in artificially inoculated mangoes. The impact of the different doses of these species on the physico-chemical parameters of the treated fruits was evaluated on day 11. Results showed that mycelial growth and spore germination were totally inhibited by C. citratus essential oil at 1,000 and 2,000 ppm throughout the experiment. In Vivo, the 1,200 ppm dose of M. quinquenervia strongly reduced the occurrence and progression of anthracnose in treated fruits compared to the control with an efficiency rate of 77.76 ± 8.73 and 86.63 ± 5.21%, respectivement. The essences did not significantly influence the physico-chemical parameters of the fruits. The doses 1,200 ppm of M. quinquenervia and 1,400 ppm of C. citratus can be recommended in a post-harvest biological control strategy against mangoes anthracnose.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2354
Author(s):  
Marwa Moumni ◽  
Mohamed Bechir Allagui ◽  
Kaies Mezrioui ◽  
Hajer Ben Amara ◽  
Gianfranco Romanazzi

Essential oils are gaining interest as environmentally friendly alternatives to synthetic fungicides for management of seedborne pathogens. Here, seven essential oils were initially tested in vivo for disinfection of squash seeds (Cucurbita maxima) naturally contaminated by Stagonosporopsis cucurbitacearum, Alternaria alternata, Fusarium fujikuro, Fusarium solani, Paramyrothecium roridum, Albifimbria verrucaria, Curvularia spicifera, and Rhizopus stolonifer. The seeds were treated with essential oils from Cymbopogon citratus, Lavandula dentata, Lavandula hybrida, Melaleuca alternifolia, Laurus nobilis, and Origanum majorana (#1 and #2). Incidence of S. cucurbitacearum was reduced, representing a range between 67.0% in L. nobilis to 84.4% in O. majorana #2. Treatments at 0.5 mg/mL essential oils did not affect seed germination, although radicles were shorter than controls, except with C. citratus and O. majorana #1 essential oils. Four days after seeding, seedling emergence was 20%, 30%, and 10% for control seeds and seeds treated with C. citratus essential oil (0.5 mg/mL) and fungicides (25 g/L difenoconazole plus 25 g/L fludioxonil). S. cucurbitacearum incidence was reduced by ~40% for plantlets from seeds treated with C. citratus essential oil. These data show the effectiveness of this essential oil to control the transmission of S. cucurbitacearum from seeds to plantlets, and thus define their potential use for seed decontamination in integrated pest management and organic agriculture.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Kamel Msaada ◽  
Nidhal Salem ◽  
Olfa Bachrouch ◽  
Slim Bousselmi ◽  
Sonia Tammar ◽  
...  

The aim of this study was to determine the chemical variability of wormwood extracts as affected by the growing region. Antioxidant and antimicrobial activities were also investigated. The essential oil composition variability ofA. absinthiumL. aerial parts collected from four different Tunisian regions was assessed by gas chromatography (GC/FID) and by gas chromatography mass spectrometry (GC/MS). In addition, total polyphenols, flavonoids, and condensed tannins as well as antioxidant, antibacterial, and antifungal activities of methanolic extract and essential oils were undertaken. Chromatographic analysis of wormwood essential oils showed the predominance of monoterpene hydrocarbons represented mainly by chamazulene. RP-HPLC analysis of wormwood methanolic extract revealed the predominance of phenolic acids. Antiradical activity was region-dependant and the methanolic extract of Bou Salem region has the strongest activity (CI50=9.38±0.82 µg/mL). Concerning the reducing power, the methanolic extract of Bou Salem, Jérissa, and Boukornine regions was more active than the positive control. Obtained results of antimicrobial activities showed that wormwood essential oil is endowed with important antibacterial activity which was strongly related to the organoleptic quality of oil which appeared strongly region-dependant.A. absinthiumL. EOs investigated are quite interesting from a pharmaceutical standpoint because of their biological activities.


2019 ◽  
Vol 31 (11) ◽  
pp. 2585-2588 ◽  
Author(s):  
Ngo Thi Cam Quyen ◽  
Tran Thi Kim Ngan ◽  
Tan Phat Dao ◽  
Phan Nguyen Quynh Anh ◽  
Ngo Quoc Anh ◽  
...  

The essential oil of Citrus microcarpa peels was applied in many fields, and the methods to improve the efficiency of citrus exploitation were increasingly concerned. In this study, citrus essential oil was extracted from calamondin by hydrodistillation. This study was carried out to investigate the factors affecting the distillation of essential oils. The highest performance of the distillation process was 2.45 % with optimal conditions (material-water ratio of 1:3 g/mL, time of 2 h, the temperature of 120 ºC). Moreover, calamondin (Citrus microcarpa) peels oil extract was analyzed by gas chromatography-mass spectrometry (GC-MS). The primary compound of calamondin essential oil include limonene 96.925 %, β-myrcene 1.424 %, 1R-α-pinene 0.561 %, cyclohexene 0.343 %, 1R-α-pinene 0.561 % and β-cubebene 0.598 %.


Sign in / Sign up

Export Citation Format

Share Document