scholarly journals Phylogenetic Diversity of Wetland Plants across China

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1850
Author(s):  
Aiying Zhang ◽  
Zhixia Ying ◽  
Xunyu Hu ◽  
Mingjian Yu

Accelerating and severe wetland loss has made wetland restoration increasingly important. Current wetland restorations do not take into consideration the ecological adaptability of wetland plants at large scales, which likely affects their long-term restoration success. We explored the ecological adaptability, including plant life forms and phylogenetic diversity, of plants across 28 wetlands in China. We found that perennial herbs were more common than annual herbs, with the proportion of perennial herbs accounting for 40–50%, 45–65%, 45–70%, 50–60%, and 60–80% of species in coastal wetlands, human-made wetlands, lake wetlands, river wetlands, and marsh wetlands, respectively. A ranking of phylogenetic diversity indices (PDIs) showed an order of marsh < river < coastal < lake < human-made, meaning that human-made wetlands had the highest phylogenetic diversity and marsh wetlands had the lowest phylogenetic diversity. The nearest taxon index (NTI) was positive in 23 out of 28 wetlands, indicating that species were phylogenetically clustered in wetland habitats. Dominant species tended to be distantly related to non-dominant species, as were alien invasive species and native species. Our study indicated that annual herbs and perennial herbs were found in different proportions in different types of wetlands and that species were phylogenetically clustered in wetland habitats. To improve wetland restoration, we suggest screening for native annual herbs and perennial herbs in proportions that occur naturally and the consideration of the phylogenetic similarity to dominant native species.

Author(s):  
Jeanine Velez-Gavilán

Abstract Pteris multifida is a herbaceous fern native to temperate and tropical eastern Asia and naturalized on many continents as a result of being widely cultivated. Although it is an urban weed, it is not considered by most countries as an invasive or noxious weed. There is no information available on the species affecting native species or natural habitats. Although one source lists P. multifida as an invasive species in many countries outside of Africa due to it being easily dispersed by spores, there are no references or further information to support this statement. It is reported as an alien invasive species in Germany, but only as occurring in sheltered sites, growing on light-vents in cellars and walls. A species assessment for Florida, USA indicates, P. multifida is neither a weed of natural habitats nor of agriculture. The species has not been listed as an invasive plant in any state or natural areas of the USA. However, P. multifida has been assigned a Tier II Invasive Species status (defined as having moderate negative impacts on wildlife or natural communities in Louisiana), but of limited concern and/or extent in Louisiana. Pteris multifida is recorded in Cuba as potentially invasive being categorized as a species with a tendency to proliferate in some areas and capable of producing vast amounts of diaspores with high dispersal potential. No further details are given about potential invasiveness.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Kumar Manish

Abstract Background So far, macroecological studies in the Himalaya have mostly concentrated on spatial variation of overall species richness along the elevational gradient. Very few studies have attempted to document the difference in elevational richness patterns of native and exotic species. In this study, this knowledge gap is addressed by integrating data on phylogeny and elevational distribution of species to identify the variation in species richness, phylogenetic diversity and phylogenetic structure of exotic and native plant species along an elevational gradient in the Himalaya. Results Species distribution patterns for exotic and native species differed; exotics tended to show maximum species richness at low elevations while natives tended to predominate at mid-elevations. Native species assemblages showed higher phylogenetic diversity than the exotic species assemblages over the entire elevational gradient in the Himalaya. In terms of phylogenetic structure, exotic species assemblages showed majorly phylogenetic clustering while native species assemblages were characterized by phylogenetic overdispersion over the entire gradient. Conclusions The findings of this study indicate that areas with high native species richness and phylogenetic diversity are less receptive to exotic species and vice versa in the Himalaya. Species assemblages with high native phylogenetic overdispersion are less receptive to exotic species than the phylogenetically clustered assemblages. Different ecological processes (ecological filtering in case of exotics and resource and niche competition in case of natives) may govern the distribution of exotic and native species along the elevational gradient in the Himalaya.


2010 ◽  
Vol 1 (1) ◽  
pp. 199 ◽  
Author(s):  
Anna Occhipinti-Ambrogi ◽  
Bella Galil

The transport of organisms across oceans is an anthropogenic agent of global change that has profoundly affected the natural distribution of littoral biota and altered the makeup of biogeographic regions. The homogenization of marine biotas is a phenomenon especially affecting coastal regions and is spearheaded by a suite of opportunistic species at the expense of native species. Climate change may exacerbate the trend: sea surface temperatures, hydrodynamics, pH and carbonate cycles, already show marked fluctuations compared to the past. Alien invasive species are impacted by the change of marine climate in a variety of ways, which are we have just begun to notice, observe and interpret. A conceptual framework has yet to be conceived that links theories on biological introductions and invasions with the physical aspects of global change. Therefore predicting the scale of invasions or their impact on biodiversity is a daunting task. Integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change. The recorded spread of alien species and analysis of patterns of invasions may serve as the starting point for searching connections with climate change descriptors. The Mediterranean Sea is home to an exceptionally large number of alien species, resulting from its exceptional history and multiple vectors. For much of the twentieth century alien thermophilic species, which had entered the Mediterranean through the Suez Canal, have been confined to the Levantine Basin. In recent years climate driven hydrographic changes have coincided with a pronounced expansion of alien thermophilic biota to the central and western basins of the Mediterranean. We discuss some changes in emergent functions and services in Mediterranean ecosystems under the combined effect of invasive species and climate changes.


2020 ◽  
Author(s):  
Juha Alatalo ◽  
Mohammad Bagher Erfanian ◽  
Ulf Molau ◽  
Shengbin Chen ◽  
Yang Bai ◽  
...  

Background and aim Global warming is expected to have large impacts on high alpine and Arctic ecosystems in future. Here we report the effects of 18 years of experimental warming on two contrasting high alpine plant communities in subarctic Sweden.Methods Using open-top chambers (OTCs), we analysed the effects of long-term passive experimental warming on two high alpine plant communities, a species- and nutrient-poor heath and a more nutrient- and species-rich mesic meadow. We determined the impact on species composition, species diversity (at the level of rare, frequent and dominant species in each community), and phylogenetic and functional diversity.Key results Long-term warming drove differentiation in the species composition in both heath and meadow vegetation, with the warmed plots having distinctly different species composition in 2013 compared with 1995. In addition, variability in species composition increased in the meadow, while it decreased in the heath. The long-term warming had a significant negative effect on the three orders of phylogenetic Hill diversity in the meadow. There was a similar tendency in the heath, but only the phylogenetic diversity of dominant species was significantly affected. Long-term warming caused a reduction in graminoids in the heath, while deciduous shrubs increased. In the meadow, cushion-forming plants showed an increase in abundance from 2001 to 2013 in the warmed plots. Conclusions Responses in species and phylogenetic diversity to experimental warming varied over both time (medium vs long-term responses) and space (i.e. between the two neighbouring plant communities heath and meadow). The meadow community was more negatively affected in terms of species and phylogenetic diversity than the heath community. A potential driver for the changes in the meadow may be decreased soil moisture caused by the long-term warming.


2021 ◽  
Author(s):  
Koji Inoue ◽  
Yuri Onitsuka ◽  
Tomoko Koito

AbstractMussels are a group of bivalves that includes the dominant species of shallow-sea, freshwater, and deep-sea chemosynthetic ecosystems. Mussels cling to various solid underwater surfaces using a proteinaceous thread, called the byssus, which is central to their ecology, physiology, and evolution. Mussels cluster using their byssi to form “mussel beds,” thereby increasing their biomass per unit of habitat area, and also creating habitats for other organisms. Clustered mussels actively filter feed to obtain nutrients, but also ingest pollutants and suspended particles; thus, mussels are good subjects for pollution analyses, especially for microplastic pollution. The byssus also facilitates invasiveness, allowing mussels to hitchhike on ships, and to utilize other man-made structures, including quay walls and power plant inlets, which are less attractive to native species. Physiologically, mussels have adapted to environmental stressors associated with a sessile lifestyle. Osmotic adaptation is especially important for life in intertidal zones, and taurine is a major component of that adaptation. Taurine accumulation systems have also been modified to adapt to sulfide-rich environments near deep-sea hydrothermal vents. The byssus may have also enabled access to vent environments, allowing mussels to attach to “evolutionary stepping stones” and also to vent chimneys.


2010 ◽  
Author(s):  
Nick Romanowski

Wetland Habitats is a practical and easy to use manual for wetland restoration and conservation of diverse animal species. Covering all the recent work in this field, among other significant issues it discusses making the most of dams and created wetlands; reversing the effects of drainage, grazing, weirs, deteriorating water quality, and associated algal problems; captive breeding and reintroduction; and controlling weeds and vermin. The book describes a range of potential problems encountered during restoration efforts and approaches to dealing with them, so that readers will be able to make informed decisions about wetlands on their own properties. It also explains how to set realistic targets for wetland restoration as well as longer-term goals for management, and includes colour photographs of diverse wetland habitats and the animals that rely on them. The examples draw on a wide range of wetland animals including some which aren’t often found in wetlands on private properties, but the primary emphasis is on the ecology, interactions and management of species and other aspects of management that will be of most use to landholders with wetlands in need of rejuvenation.


2022 ◽  
pp. 106-127
Author(s):  
Dipanwita Sarkar (Paria) ◽  
Nibedita Maji

Wetland-related studies documented the loss of native species diversity and promotion of the biotic homogenization due to wetland loss. Excessive withdrawals of water from wetlands for residential, agricultural, or industrial use are responsible for wetland degradation. Constructions of dams impedes water flow and replenishment of wetlands, and it also creates a hazard to aquatic living organisms. Climate change causing some wetlands to disappear under rising sea levels, while others are severely impacted by changing climatic conditions, including drought. So necessary steps such as increase wetlands and prevention of the illegal swamping of wetlands, etc. should be taken for conserving the wetland biodiversity from the threatening of unplanned urbanization, purifying the environment and mainlining the sustainable development. Though the Ramsar Convention policy exists to persevere wetlands and achieve sustainable development throughout the world, mass consciousness, greater participation of local people, use of indigenous knowledge in the management strategies are needed to protect wetlands.


2021 ◽  
Vol 25 (2) ◽  
Author(s):  
BIAWA-KAGMEGNI MIRIC ◽  
FOGUIENG-SAHA DIDIER ◽  
GUETSOP-NGOUADJIE PRUDENCE ◽  
TSEKANE JUNIOR ◽  
FOUELIFACK-NINTIDEM BORIS ◽  
...  

The Douala harbour represents the main gateway through which human activities introduce invasive ants, so that Solenopsis geminata (Fabricius, 1804) originating from Neotropics has been reported in several areas of the Littoral region of Cameroon. But nothing is known about the ant community structure and composition of the coastal zone. We hypothesized that environmental perturbations around Douala have repercussions on the native litter-dwelling ants. Collections conducted in 33 houses, six gardens of 225 m² each, 41 plantations of one hectare each and 34 two-year old fallows of one hectare each suggested lowly even communities, low species richness, low diversity and low dominance by a few species. Among 28 species recorded four species were mostly represented: two foreign origin species [S. geminata (Fabricius, 1804) and Trichomyrmex destructor (Jerdon, 1851), from tropical America and India respectively], one native species [Pheidole megacephala (Fabricius, 1793)] and two ambiguous native range species [Paratrechina longicornis (Latreille, 1802) and Tapinoma melanocephalum (Fabricius, 1793)] since they have long been recorded as having a widespread distribution. Alien species were highly represented than native ones (52.9% and 47.1% respectively, p<0.001). Inside houses, gardens and plantations the ant species were distributed according to the geometrical progression (Motomura’s model) while in the old fallows abundance distribution suggested an evolved ecosystem (Mandelbrot’s model). Between the three dominant species [Pa. longicornis (Latreille, 1802), Ph. megacephala (Fabricius) and S. geminata (Fabricius)], the first species was positively correlated with the third one while other associations were not significant. These dominant species appeared influencing the abundance of the rare species. Dominance and high abundance of a few species indicated that areas were influenced mostly by interspecies competition and/or disturbance by human activities.


Sign in / Sign up

Export Citation Format

Share Document