scholarly journals Effects of Low Temperature, Nitrogen Starvation and Their Combination on the Photosynthesis and Metabolites of Thermosynechococcus E542: A Comparison Study

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2101
Author(s):  
Xingkang Li ◽  
Yuanmei Liang ◽  
Kai Li ◽  
Peng Jin ◽  
Jie Tang ◽  
...  

Both low temperature and nitrogen starvation caused chlorosis of cyanobacteria. Here, in this study, for the first time, we compared the effects of low temperature, nitrogen starvation, and their combination on the photosynthesis and metabolites of a thermophilic cyanobacterium strain, Thermosynechococcus E542. Under various culture conditions, the growth rates, pigment contents, and chlorophyll fluorescence were monitored, and the composition of alkanes, lipidomes, and carbohydrates were determined. It was found that low temperature (35 °C) significantly suppressed the growth of Thermosynechococcus E542. Nitrogen starvation at 45 °C and 55 °C did not affect the growth; however, combined treatment of low temperature and nitrogen starvation led to the lowest growth rate and biomass productivity. Both low temperature and nitrogen starvation caused significantly declined contents of pigments, but they resulted in a different effect on the OJIP curves, and their combination led to the lowest pigment contents. The composition of fatty acids and alkanes was altered upon low-temperature cultivation, while nitrogen starvation caused reduced contents of all lipids. The low temperature did not affect carbohydrate contents, while nitrogen starvation greatly enhanced carbohydrate content, and their combination did not enhance carbohydrate content, but led to reduced productivity. These results revealed the influence of low temperature, nitrogen starvation, and their combined treatment for the accumulation of phycobiliproteins, lipids, and carbohydrates of a thermophilic cyanobacterium strain, Thermosynechococcus E542.

2018 ◽  
Vol 64 (No. 9) ◽  
pp. 379-386 ◽  
Author(s):  
Deligöz Ayşe ◽  
Bayar Esra ◽  
Genç Musa ◽  
Karatepe Yasin ◽  
Kirdar Erol ◽  
...  

Variations in the photosynthetic pigments and total carbohydrate contents of needles of different age classes (current-year, 1-year-old, 2-year-old and 3-year-old) of Pinus nigra subsp. pallasiana (Lambert) Holmboe trees in a young natural stand were investigated during the growing season. In current-year needles, total carbohydrate content was lower during June and July when the needle growth continued than in older age classes, but it was similar to other age classes in the months of August to October. Seasonal patterns of variations in total carbohydrate content were almost similar in 1-, 2-, and 3-year-old needles. Chlorophyll and carotenoid contents increased from May to June, remained relatively constant or declined slightly during summer and autumn in 1-, 2-, and 3-year-old needles. In October, the pigment content was highest in 1-year-old needles, and lowest in 3-year-old needles. Our study indicated that total carbohydrate and pigment contents were affected by needle age classes and seasons.


2001 ◽  
Vol 16 (7) ◽  
pp. 2158-2169 ◽  
Author(s):  
B. Basu ◽  
J. Vleugels ◽  
O. Van Der Biest

The objective of the present article is to study the influence of TiB2 addition on the transformation behavior of yttria stabilized tetragonal zirconia polycrystals (Y-TZP). A range of TZP(Y)–TiB2 composites with different zirconia starting powder grades and TiB2 phase contents (up to 50 vol%) were processed by the hot-pressing route. Thermal expansion data, as obtained by thermo-mechanical analysis were used to assess the ZrO2 phase transformation in the composites. The thermal expansion hysteresis of the transformable ceramics provides information concerning the transformation behavior in the temperature range of the martensitic transformation and the low-temperature degradation. Furthermore, the transformation behavior and susceptibility to low-temperature degradation during thermal cycling were characterized in terms of the overall amount and distribution of the yttria stabilizer, zirconia grain size, possible dissolution of TiB2 phase, and the amount of residual stress generated in the Y-TZP matrix due to the addition of titanium diboride particles. For the first time, it is demonstrated in the present work that the thermally induced phase transformation of tetragonal zirconia in the Y-TZP composites can be controlled by the intentional addition of the monoclinic zirconia particles into the 3Y-TZP matrix.


2018 ◽  
Vol 11 (03) ◽  
pp. 1850057 ◽  
Author(s):  
Reza Meshkini Far ◽  
Olena V. Ischenko ◽  
Alla G. Dyachenko ◽  
Oleksandr Bieda ◽  
Snezhana V. Gaidai ◽  
...  

Here, we report, for the first time, on the catalytic hydrogenation of CO2 to methane at atmospheric pressure. For the preparation of hydrogenation catalysts based on Ni and Fe metals, a convenient method is developed. According to this method, low-temperature reduction of the co-precipitated Ni and Fe oxides with hydrogen gives the effective and selective bimetallic Ni[Formula: see text]Fe[Formula: see text], Ni[Formula: see text]Fe[Formula: see text] and Ni[Formula: see text]Fe[Formula: see text] catalysts. At the temperature range of 300–400[Formula: see text]C, they exhibit a high efficiency of CH4 production with respect to monometallic Ni and Fe catalysts. The results imply a synergistic effect between Ni and Fe which caused the superior activity of the Ni[Formula: see text]Fe[Formula: see text] catalyst conversing [Formula: see text]% of CO2 into CH4 at 350[Formula: see text]C. To adapt the Ni–Fe catalysts in the industry, the effect of two different carriers on the efficiency of the alumina-supported Ni[Formula: see text]Fe[Formula: see text] catalyst was investigated. It is found that the Ni[Formula: see text]Fe[Formula: see text]/[Formula: see text]-Al2O3 catalyst effectively conversed CO2 giving 100% methane yield already at 275[Formula: see text]C.


1971 ◽  
Vol 134 (2) ◽  
pp. 395-416 ◽  
Author(s):  
Carl W. Pierce ◽  
Barbara M. Johnson ◽  
Harriet E. Gershon ◽  
Richard Asofsky

We have demonstrated for the first time that mouse spleen cells stimulated in vitro with heterologous erythrocytes developed immunoglobulin class-specific γM, γ1, γ2a+2b, and γA plaque-forming cell (PFC) responses. A modification of the hemolytic plaque technique, the addition of goat anti-mouse µ-chain antibody to the assay preparation, specifically prevented development of all γM PFC and enabled accurate and reproducible enumeration of immunoglobulin class-specific PFC after treatment with appropriate monospecific anti-globulins and complement. Culture conditions, with regard to medium, atmosphere, agitation, and spleen cell densities, were similar to those previously shown to support only γM PFC responses. Evaluation of the kinetics of appearance of PFC showed that γM PFC reached maximum numbers on days 4–5; the magnitude of this response was 3–10 times greater than γ1 γ2a+2b, or γA PFC which reached maximum numbers on days 5–6. Optimal erythrocyte antigen dose for γM PFC responses was 107/culture, whereas a dose of 106 erythrocytes/culture consistently stimulated optimal γ1 γ2a+2b, or γA PFC responses. Investigations of the effects of anti-erythrocyte antibody on γM and γG PFC responses indicated that antibody suppressed these responses by neutralizing the effective antigenic stimulus at the macrophage-dependent phase of the response. At the same antibody concentration, γG PFC responses were more effectively suppressed than γM PFC responses. Further, γG responses could be almost completely suppressed by antibody as long as 48 hr after initiation of cultures, whereas γM PFC responses could only be completely suppressed during the first 24 hr. These results were discusssed in terms of the role of antigen in the stimulation γM and γG antibody.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 635
Author(s):  
Liam A. Bullock ◽  
John Parnell ◽  
Joseph G.T. Armstrong ◽  
Magali Perez ◽  
Sam Spinks

Gold grains, up to 40 μm in size and containing variable percentages of admixed platinum, have been identified in coals from the Leinster Coalfield, Castlecomer, SE Ireland, for the first time. Gold mineralisation occurs in sideritic nodules in coals and in association with pyrite and anomalous selenium content. Mineralisation here may have reflected very high heat flow in foreland basins north of the emerging Variscan orogenic front, responsible for gold occurrence in the South Wales Coalfield. At Castlecomer, gold (–platinum) is attributed to precipitation with replacive pyrite and selenium from groundwaters at redox interfaces, such as siderite nodules. Pyrite in the cores of the nodules indicates fluid ingress. The underlying Caledonian basement bedrock is mineralised by gold, and thus likely provided a source for gold. The combination of the gold occurrences in coal in Castlecomer and in South Wales, proximal to the Variscan orogenic front, suggests that these coals along the front could comprise an exploration target for low-temperature concentrations of precious metals.


2020 ◽  
Vol 22 (7) ◽  
pp. 2197-2202 ◽  
Author(s):  
Simon P. Bassett ◽  
Andrew D. Russell ◽  
Paul McKeown ◽  
Isabel Robinson ◽  
Thomas R. Forder ◽  
...  

A stereoselective, solvent-free ring-opening polymerisation (ROP) of lactide (LA) in supercritical carbon dioxide (scCO2) is reported for the first time.


Author(s):  
Ping Guo ◽  
Weiwei Xu ◽  
Shi Tang ◽  
Binxia Cao ◽  
Danna Wei ◽  
...  

One cold-adapted strain, named Planococcus sp. XW-1, was isolated from the Yellow Sea. The strain can produce biosurfactant with petroleum as sole source of carbon at low temperature (4 °C). The biosurfactant was identified as glycolipid-type biosurfactant species by thin-layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR). It reduced the surface tension of water to 26.8 mN/m with a critical micelle concentration measurement of 60 mg/L. The produced biosurfactant possesses high surface activity at wide ranges of temperature (−18–105 °C), pH values (2–12), and salt concentrations (1–18%). The biosurfactant exhibited higher surface activity and higher growth rate of cells with hexadecane and diesel as carbon source. The strain Planococcus sp. XW-1 was also effective in degrading crude oil, after 21 days of growth at 4 °C in medium with 1% crude oil and 1% (v/v) bacteria broth, 54% of crude oil was degraded. The results suggest that Planococcus sp. XW-1 is a promising candidate for use in the bioremediation of petroleum-contaminated seawater in the Yellow Sea during winter. This study reported for the first time that Planococcus isolated from the Yellow Sea can produce biosurfactant using petroleum as the sole carbon source at low temperature (4 °C), showing its ecological role in the remediation of marine petroleum pollution.


1995 ◽  
Vol 120 (2) ◽  
pp. 222-227 ◽  
Author(s):  
A. Garcia-Luis ◽  
F. Fornes ◽  
J.L. Guardiola

The carbohydrate contents of the leaves of satsuma mandarin (Citrus unshiu Marc.) trees were altered before or during the low temperature flower induction period to determine the relationship between gross levels of carbohydrates and flower formation. Early removal of the fruit and girdling of the branches on either fruiting or defruited trees caused an accumulation of carbohydrates in the leaves and increased flower formation. Shading the trees resulted in a transient reduction in leaf carbohydrate levels and in a decrease in flower formation. Although a relationship between carbohydrate levels and flowering was consistently found, our results show that the gross levels of carbohydrates do not appear to limit flower formation in citrus.


PPAR Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wen Bao ◽  
Rui Kong ◽  
Nan Wang ◽  
Wei Han ◽  
Jie Lu

At present, there are more and more patients with acute hypertriglyceridemia pancreatitis in clinical practice. Common treatment measures include fasting and water withdrawal, fluid resuscitation, and somatostatin. In recent years, studies have pointed out that the PPARa agonist fenofibrate may help improve the condition of such patients. Therefore, through clinical research and analysis, we reported for the first time that fenofibrate combined with octreotide acetate has a more excellent effect in the treatment of patients with acute hypertriglyceridemia pancreatitis, and from the perspective of signal pathways, we revealed that the combination of the two drugs has an effect on NF-κB P65. The synergistic inhibitory effect proves that the combined treatment is beneficial to control inflammation, protect liver function, and improve the prognosis of patients. It is worthy of clinical promotion.


2019 ◽  
pp. 45-46
Author(s):  
N. N. Matveev ◽  
V. V. Saushkin ◽  
N. Yu. Evsikova ◽  
N. S. Kamalova ◽  
V. I. Lisitsyn

For the first time, a method based on the registration of polarization and depolarization currents arising in wood in a non-uniform temperature field was used to study the properties of cellulose. The purpose of the method used is to record the relaxation of bound charges with a change in the temperature of the sample under study. It is shown that the detected low-temperature transitions have a crystal-crystal polarization mechanism, and the natural polymer cellulose is an active dielectric.


Sign in / Sign up

Export Citation Format

Share Document