scholarly journals Nano Zinc Oxide Green-Synthesized from Plumbago auriculata Lam. Alcoholic Extract

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2447
Author(s):  
Mina Michael Melk ◽  
Seham S. El-Hawary ◽  
Farouk Rasmy Melek ◽  
Dalia Saleh ◽  
Omar M. Ali ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) were synthesized by using an alcoholic extract of the flowering aerial parts of Plumbago auriculata Lam. Dynamic Light Scattering (DLS) revealed that the average size of synthesized ZnO NPs was 10.58 ± 3.350 nm and the zeta potential was −19.6 mV. Transmission electron microscopy (TEM) revealed that the particle size was in the range from 5.08 to 6.56 nm. X-ray diffraction (XRD) analysis verified the existence of pure hexagonal shaped crystals of ZnO nanoparticles with an average size of 35.34 nm in the sample, which is similar to the particle size analysis acquired by scanning electron microscopy (SEM) (38.29 ± 6.88 nm). HPLC analysis of the phenolic ingredients present in the plant extract showed that gallic acid, chlorogenic acid, and catechin were found as major compounds at concentrations of 1720.26, 1600.42, and 840.20 µg/g, respectively. Furthermore, the inhibitory effects of ZnO NPs and the plant extract against avian metapneumovirus (aMPV) subtype B were also investigated. This assessment revealed that the uncalcinated form of Nano-ZnO mediated by P. auriculata Lam. extract possessed a significant antiviral activity with 50% cytotoxic concentration (CC50) and 50% inhibition concentration (IC50) of 52.48 ± 1.57 and 42.67 ± 4.08 µg/mL, respectively, while the inhibition percentage (IP) was 99% and the selectivity index (SI) was 1.23.

2020 ◽  
Vol 5 (3) ◽  
pp. 101-107
Author(s):  
Sahar Galedari ◽  
Maryam Teimouri

Introduction: Recently, the biosynthesis of nanoparticles (NPs) using medicinal plants has attracted the attention of researchers due to their low cost and environmental compatibility. The aim of this study was to determine the anti-biofilm effects of zinc oxide (ZnO)-NPs synthesized using the Artemisia plant extract on the clinical samples of Pseudomonas aeruginosa. Methods: In this experimental study, the alcoholic extract of Artemisia was prepared using the Soxhlet extraction method to synthesize ZnO-NPs. Then, the physical and chemical structures of the NPs were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and ultraviolet/visible (UV-Vis) techniques. In addition, the gene expression of ndvB was analyzed by the polymerase chain reaction method. Finally, anti-biofilm and antimicrobial effects were evaluated using the minimum inhibitory concentration test and microtiter plate assay. Results: The antimicrobial results showed that ZnO-NPs had a spherical structure approved by the UV-Vis test. Further, ZnO-NPs had inhibitory effects on biofilm formation by P. aeruginosa strains. The results demonstrated that ZnO-NPs were effective on the isolations at the lowest and highest viscosities of 3.125 and 100 mg/mL, respectively. Conclusion: The biosynthesis of ZnO-NPs using the Artemisia plant extract is low cost and easy. Moreover, these NPs can be used as a drug with antimicrobial and anti-biofilm effects.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2008
Author(s):  
Samsul Rizal ◽  
N. I. Saharudin ◽  
N. G. Olaiya ◽  
H. P. S. Abdul Khalil ◽  
M. K. Mohamad Haafiz ◽  
...  

The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.


1989 ◽  
Vol 169 ◽  
Author(s):  
Rollin E. Lakis ◽  
Sidney R. Butler

AbstractY1Ba2Cu3O7 has been prepared by the evaporative decomposition of solutions method. Nitrate and mixed anion solutions were atomized and decomposed at temperatures ranging from 300°C to 950°C. The resulting materials have been characterized using x-ray powder diffraction, Thermal Gravimetric Analysis (TGA), particle size analysis, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The powder consists of 0.3 micron agglomerated hollow spheres with a primary particle size of 0.06 micron. TGA and x-ray diffraction indicate the presence of barium nitrate and barium carbonate due to incomplete decomposition and/or product contamination by the process environment.


2018 ◽  
Vol 10 (1) ◽  
pp. 338
Author(s):  
Rachmawati Ramadhana Mustofa ◽  
Iskandarsyah .

Objective: This study aimed to prepare and characterize anti-acne ethosomes using the cold- and thin-layer hydration methods.Methods: A sonication step was included during ethosome preparation to improve the quality of the cold method. Azelaic acid, Phospholipon 90G,ethanol, propylene glycol, and phosphate buffer (pH 7.4) were used in the procedures. Prepared ethosomal suspensions were characterized usingtransmission electron microscopy, particle-size analysis, and spectrophotometry.Results: Ethosomes prepared using the thin-layer hydration method (F1) had small unilamellar vesicles, while those prepared using the cold methodwith 15-min sonication (F4) showed spherical, elliptical, unilamellar, and multilamellar vesicles. F1 ethosomes had a Dmean volume of 648.57±231.26,whereas those prepared using the cold method with 5- (F2), 10- (F3), and 15-min (F4) sonication had Dmean volumes of 2734.04±231.49 nm,948.90±394.52 nm, and 931.69±471.84 nm, respectively. Polydispersity indices of F2, F3, and F4 ethosomes were 0.74±0.21, 0.86±0.05, and 0.91±0.03,respectively, with a poor particle-size distribution, compared to that of F1 (0.39±0.01). Zeta potentials of F1–F4 ethosomes were −38.27±1.72 mV,−23.53±1.04 mV, −31.4±1.04 mV, and −34.3±1.61 mV, respectively. Entrapment efficiencies of F1–F4 ethosomes were 90.71±0.11%, 53.84±3.16%,72.56±0.28%, and 75.11±1.42%, respectively.Conclusion: Anti-acne ethosomes produced using the thin-layer hydration method had superior properties than those produced using the coldmethod with 15-min sonication.


2012 ◽  
Vol 18 (S2) ◽  
pp. 1364-1365 ◽  
Author(s):  
Y. Zhao ◽  
Y. Tang ◽  
G. Vaughan ◽  
D. Ozkaya

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


1992 ◽  
Vol 82 (2) ◽  
pp. 111-115 ◽  
Author(s):  
C Abramson ◽  
J Wilton

Nail dust particles were analyzed by scanning electron microscopy for size and topography. The percentage of "fines" that could be inhaled and deposited in the alveoli and bronchioles were determined by quantitative particle size analysis. Distribution representing the largest total mass was graphed between 1 and 2 microns. The authors found that 86% of nail dust would reach the bronchioles and alveoli, and 31% could be expected to deposit in these areas.


2011 ◽  
Vol 412 ◽  
pp. 25-31
Author(s):  
Wen Yuan Gao ◽  
Xing Xin Jia ◽  
Mei Hong Niu ◽  
Nai Ling Tang ◽  
Zhi Qiang Hu

The nanosized TiO2 is prepared by micro-emulsion process in the system of cyclohexane / [Span80 combined with OP-10] / water with TiCl4 as raw material. The selection method of the surface-active agents was investigated and the influence of amount of surfactant, water / oil ratio and concentration of reactants on the particle size were discussed in this work. The temperature schedule, crystal structure, particle size distribution and appearance of the nanocrystalline TiO2 were analyzed by differential thermal analysis (DTA) combined with X-ray diffraction (XRD), laser particle size analysis (LPSA) and scanning electron microscope (SEM). The results showed that: under these conditions of mixture of 8g Span80 and 2g OP-10 as the emulsifier, water / oil mass ratio of 1/4, TiCl4 concentration of 0.6mol / L and calcinations temperature of 510°C, nanoTiO2 powder with smaller particle size and better dispersion was prepared . And the average size of the product was 27.3nm.


2020 ◽  
Vol 8 (6) ◽  
pp. 3749-3755

In the present study Cu2MnSnS4 /Se4 nanostructured material is synthesized using mechanical alloying. The elemental powders were alloyed in a high-energy ball mill under the following conditions: milling time 25 hours, ball-to-powder mass ratio (BPR) 10:1 and a rotation speed of 300 rpm. Detailed investigation of the microstructure of the synthesized alloy was carried out. The starting elemental powders size and morphology were characterized using Apreo field emission gun scanning electron microscope (FEGSEM). Elemental mapping of the synthesized alloy was characterized using energy dispersive spectroscopy (EDS) attached to FEGSEM system. Analysis of microstructure was performed using EDAX-TEAM advanced software. A dynamic laser light scattering was used for particle size analysis. The results showed that Cu2MnSnS4 /Se4 nanostructured is successfully synthesized by ball milling. The Z-average size distribution of the particle reveals that ball milling results in a considerable refining in the particle size from 44 micron down to 923.5 nm. Further, it was observed that 94.4% showed an average size of 725.8±233 nm. Microstructural analysis confirmed the formation of a homogenous structure of Cu2MnSnS4 /Se4 alloy in the powder and green samples. The elemental mapping confirmed the formation of solid solution of the processed alloy with homogenous distribution of all elements in the examined region. Quantitative analysis performed by EDAX-TEAM software confirmed the chemical composition and homogeneity of the processed material.


Sign in / Sign up

Export Citation Format

Share Document