scholarly journals Effect of Salt Stress and Foliar Application of Salicylic Acid on Morphological, Biochemical, Anatomical, and Productivity Characteristics of Cowpea (Vigna unguiculata L.) Plants

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 115
Author(s):  
Ahmed M. El-Taher ◽  
Hany S. Abd El-Raouf ◽  
Nahid A. Osman ◽  
Samah N. Azoz ◽  
Magdy A. Omar ◽  
...  

The present study aimed to investigate the impact of salinity on vegetative growth, chemical constituents, and yields of cowpeas (Vigna unguiculata) and the possible benefits of salicylic acid (SA) on these plants after damage from salinity. To achieve these objectives, two pot experiments were carried out at the Faculty of Agriculture, Al-Azhar University, Egypt, during the two growing seasons of 2019 and 2020. The results revealed that salinity significantly decreased, and SA treatment substantially increased the plant height, number of compound leaves, number of internodes per plant, fresh weights of leaves and stems, productivity, photosynthetic pigments content, and concentrations of nitrogen (N), phosphorus (P), and potassium (K) of the cowpea plants compared with the control. The anatomical structure of stems and leaves of the plants were also investigated, and it was found that positive variations in the anatomical structure of the median portion of the main stems and blades of mature foliage leaves were detected in the stressed and SA-treated plants. In conclusion, SA treatment increased the salt stress tolerance of cowpea plants by improving the morphological and physiological attributes of the plants.

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 657
Author(s):  
Reda E. Abdelhameed ◽  
Arafat Abdel Hamed Abdel Latef ◽  
Rania S. Shehata

Considering the detrimental effects of salt stress on the physiological mechanisms of plants in terms of growth, development and productivity, intensive efforts are underway to improve plant tolerance to salinity. Hence, an experiment was conducted to assess the impact of the foliar application of salicylic acid (SA; 0.5 mM) on the physiological traits of fenugreek (Trigonellafoenum-graecum L.) plants grown under three salt concentrations (0, 75, and 150 mM NaCl). An increase in salt concentration generated a decrease in the chlorophyll content index (CCI); however, the foliar application of SA boosted the CCI. The malondialdehyde content increased in salt-stressed fenugreek plants, while a reduction in content was observed with SA. Likewise, SA application induced an accumulation of proline, total phenolics, and flavonoids. Moreover, further increases in total free amino acids and shikimic acid were observed with the foliar application of SA, in either control or salt-treated plants. Similar results were obtained for ascorbate peroxidase, peroxidase, polyphenol oxidase, and catalase with SA application. Hence, we concluded that the foliar application of SA ameliorates salinity, and it is a growth regulator that improves the tolerance of fenugreek plants under salt stress.


2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Zeeshan Rehman ◽  
Abrar Hussain ◽  
Shanzay Saleem ◽  
Sheza Ayaz Khilji ◽  
Zahoor Ahmad Sajid

Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 146 ◽  
Author(s):  
Hashem H.A. ◽  
Mansour H.A. ◽  
El-Khawas S.A. ◽  
Hassanein R.A.

The present study aimed to evaluate the potentiality of three seaweeds, which belong to different algal taxa (green alga Ulva lactuca Linnaeus, brown alga Cystoseira spp., and red alga Gelidium crinale (Hare ex Turner) Gaillon) as bio-fertilizers to improve the growth and yield of canola (Brassica napus L.) plants under greenhouse conditions. Furthermore, the impact of seaweeds in alleviating the effects of salt stress (75 and 150 mM NaCl) on canola plants was also investigated. The three examined seaweeds (applied as soil amendments) successfully alleviated the harmful effects of salinity on canola plants by significantly reducing the inhibition of chlorophyll a, b, total carbohydrate accumulation, and growth promoting hormones, while increasing antioxidative compounds, such as phenols, flavonoids, anthocyanin, and osmoprotectants, including total carbohydrates and proline. Phytochemical analysis of the three examined seaweeds suggests that their stimulatory effect on growth and productivity under normal and salinity growth conditions may be linked to their constituents of a wide variety of growth promotive hormones, including indole acetic acid, indole butyric acid, gibberellic acid, cytokinins, total carbohydrates, and phenolic compounds. U. lactuca was found to be the best candidate to be used as a bio-fertilizer to improve canola growth, yield, and salt stress tolerance.


Author(s):  
Mubeen Sarwar ◽  
Muhammad Amjad ◽  
Sumreen Anjum ◽  
Muhammad Waqar Alam ◽  
Shahbaz Ahmad ◽  
...  

Salinity is an ancient environmental phenomenon and reflected as the most important process of land degradation. It is widespread at variable degrees across the world. A sand culture study was conducted in order to investigate the performance of exogenously applied triacontanol on two tolerant (Green long and Marketmore) and two sensitive (Summer green and 20252) genotypes of cucumber (Cucumis sativus L.) under salinity stress (NaCl 50 mM). The foliar application of triacontanol was carried out @ 0.20, 0.40, 0.60, 0.80, 1.00 and 1.20 mg L-1. Salinity caused significant reduction in growth rate, gas exchange and other physiological attributes. Results revealed that triacontanol seemed to relieve the harmful impact of salt stress by improving morpho-physiological attributes and decreasing membrane leakage. Genotypes Green long and Marketmore performed better under salt stress regarding all studied parameters than Summer green and 20252. However, foliar feeding of triacontanol significantly enriched the efficiency of sensitive genotypes under saline conditions. The highest values of different attributes of cucumber plants were observed with foliar application of 0.80 mg L-1 triacontanol. Hence, triacontanol can be effectively used as a mitigating agent to alleviate phytotoxic effects in plants under saline stress.


2020 ◽  
Vol 64 ◽  
pp. 150-158
Author(s):  
L.-L. YU ◽  
Y. LIU ◽  
F. ZHU ◽  
X.-X. GENG ◽  
Y. YANG ◽  
...  

1970 ◽  
pp. 07-13
Author(s):  
Ahmed A. El-Tantawy ◽  
Samah N. Azoz

The present study was conducted through the two growing seasons of 2017 and 2018 to disclose the impact of foliar application with different concentrations of stigmasterol (0, 25, 50, 75 and 100 ppm) on vegetative growth characters, yield of fresh herb/plant, anatomical structures of vegetative organs (main stem and leaves) and percentage and constituents of aromatic oil of basil plant. The obtained results indicated that stigmasterol application had a enhancing effect on growth and productivity as well as on the percentage and composition of volatile oil of basil plant and the maximum promotion was detected at 100 ppm stigmasterol. Such treatment induced favorable changes in the anatomical structures of vegetative organs.


2021 ◽  
Vol 20 (03) ◽  
pp. 50-60
Author(s):  
Lien B. Ho

Lucky bamboo plants (Dracaena sanderiana) were used to study the accumulation and distribution of lead (Pb) in tissues of root, stem and leaf, as well as the impact of lead accumulation on the anatomical structure of these tissues. Dracaena sanderiana plants were exposed to Pb(NO3)2 solution at the Pb concentrations of 0; 200; 400; 600; 800; 1,000; 2,000; 3,000 and 4,000 mg/L for 60 days. The results showed that the more the Pb concentration was used, the more the amount of lead was accumulated and deposited. The tolerance limit of Dracaena sanderiana was 800 mg/L of Pb in water. The lethal concentration for plants was 4,000 mg/L Pb. When the concentrations of Pb in the solution were higher than the tolerance limit of the plant, the growth of Dracaena sanderiana could be inhibited. Dracaena sanderiana could accumulate up to 39,235 mg/kg Pb in the presence of Pb at 800 mg/L. Lead was accumulated mainly in roots (97.5%) and deposited mainly in the cell walls and the spaces between cells in tissues of roots. In the stems and leaves of Dracaena sanderiana, lead accumulation was limited and distributed mainly around vascular bundles. Lead accumulation caused changes in the anatomical structure of root, stem and leaf tissues. The accumulation and distribution of Pb is mainly in the cell walls and the space of cells; it could be a detoxification


HortScience ◽  
2015 ◽  
Vol 50 (10) ◽  
pp. 1518-1523 ◽  
Author(s):  
Shanshan Sun ◽  
Mengying An ◽  
Liebao Han ◽  
Shuxia Yin

Perennial ryegrass (Lolium perenne L.) is a widely used turfgrass. In this study, the effect of exogenously applied 24-epibrassinolide (EBR) on salt stress tolerance of perennial ryegrass was investigated. The results indicated that pretreatment with four concentrations of EBR (0, 0.1, 10, 1000 nM) improved salt tolerance of perennial ryegrass. Exogenous EBR treatment decreased electrolyte leakage (EL), malondialdehyde (MDA), and H2O2 contents and enhanced the leaf relative water content (RWC), proline, soluble sugar, and soluble protein content under salt stress condition. Meanwhile, EBR reduced the accumulation of Na+ and increased K+, Ca2+, and Mg2+ contents in leaves after salt treatment. Moreover, EBR pretreatment also increased superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) activity, as well as ascorbic acid (AsA) and glutathione contents. These results suggested that EBR improved salt tolerance by enhancing osmotic adjustment and antioxidant defense systems in perennial ryegrass.


Author(s):  
Tahsina Sharmin Hoque ◽  
Abdullah Al Manum Sohag ◽  
David J. Burritt ◽  
Mohammad Anwar Hossain

Sign in / Sign up

Export Citation Format

Share Document