scholarly journals Valuable Fatty Acids in Bryophytes—Production, Biosynthesis, Analysis and Applications

Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 524 ◽  
Author(s):  
Lu ◽  
Eiriksson ◽  
Thorsteinsdóttir ◽  
Simonsen

Bryophytes (mosses, liverworts and hornworts) often produce high amounts of very long-chain polyunsaturated fatty acids (vl-PUFAs) including arachidonic acid (AA, 20:4 △5,8,11,14) and eicosapentaenoic acid (EPA, 20:5 △5,8,11,14,17). The presence of vl-PUFAs is common for marine organisms such as algae, but rarely found in higher plants. This could indicate that bryophytes did not lose their marine origin completely when they landed into the non-aqueous environment. Vl-PUFA, especially the omega-3 fatty acid EPA, is essential in human diet for its benefits on healthy brain development and inflammation modulation. Recent studies are committed to finding new sources of vl-PUFAs instead of fish and algae oil. In this review, we summarize the fatty acid compositions and contents in the previous studies, as well as the approaches for qualification and quantification. We also conclude different approaches to enhance AA and EPA productions including biotic and abiotic stresses.

1998 ◽  
Vol 1998 ◽  
pp. 35-35 ◽  
Author(s):  
R.J. Dewhurst ◽  
P.J. King

Ruminant products have been criticised for the possible adverse effects of their saturated fatty acids on human health. Conversely, the omega-3 polyunsaturated fatty acids, notably those in fish oils, have been identified as beneficial components of the human diet. Earlier studies have shown that a small, but useful, amount of forage α-linolenic acid (C18:3), an omega-3 fatty acid, appears in ruminant products (Wood and Enser, 1996). The objective of the current work was to evaluate the range of α-linolenic acid concentrations in laboratory grass silages in order to assess the opportunities to modify ensiling techniques to increase the natural delivery of omega-3 fatty acid from grass silage to milk or meat.


1998 ◽  
Vol 1998 ◽  
pp. 35-35
Author(s):  
R.J. Dewhurst ◽  
P.J. King

Ruminant products have been criticised for the possible adverse effects of their saturated fatty acids on human health. Conversely, the omega-3 polyunsaturated fatty acids, notably those in fish oils, have been identified as beneficial components of the human diet. Earlier studies have shown that a small, but useful, amount of forage α-linolenic acid (C18:3), an omega-3 fatty acid, appears in ruminant products (Wood and Enser, 1996). The objective of the current work was to evaluate the range of α-linolenic acid concentrations in laboratory grass silages in order to assess the opportunities to modify ensiling techniques to increase the natural delivery of omega-3 fatty acid from grass silage to milk or meat.


2021 ◽  
Vol 11 (5) ◽  
pp. 2409
Author(s):  
Wojciech Kolanowski

Salmonids are valuable fish in the human diet due to their high content of bioactive omega-3 very long-chain polyunsaturated fatty acid (VLC PUFA). The aim of this study was to assess the omega-3 VLC PUFA content in selected salmonid fish present on the food market regarding whether they were farm-raised or wild. It was assumed that farm-raised fish, by eating well-balanced feed enriched with omega-3 PUFA, might contain omega-3 VLC PUFA in levels similar to that of wild fish. Fat content, fatty acid composition and omega-3 VLC PUFA content in fish fillets were measured. Farm-raised salmon from Norway, wild Baltic salmon, farm-raised rainbow trout and brown trout were bought from a food market whereas wild trout (rainbow and brown) were caught alive. The fat content in fish ranged from 3.3 to 8.0 g/100 g of fillet. It was confirmed that although wild salmonid fish contain 10–25% more omega-3 VLC PUFA in lipid fraction, the farm-raised ones, due to the 60–100% higher fat content, are an equally rich source of these desirable fatty acids in the human diet. One serving (130 g) of salmonid fish fillets might provide a significant dose of omega-3 VLC PUFA, from 1.2 to 2.5 g. Thus, due to very high content of bioactive fatty acids eicosapentaenoic (EPA), docosapentaenoic (DPA) and docosahexaenoic (DHA) in their meat, salmonid fish currently present on the food market, both sea and freshwater as well as wild and farm-raised, should be considered as natural functional food.


2015 ◽  
Vol 22 (3) ◽  
pp. 153-162 ◽  
Author(s):  
Juçara X. Zaparoli ◽  
Eduardo K. Sugawara ◽  
Altay A.L. de Souza ◽  
Sérgio Tufik ◽  
José Carlos F. Galduróz

Background: High oxidative stress, which is caused by smoking, can alter omega-3 fatty acid concentrations. Since omega-3 fatty acids play a role in dopaminergic neurotransmission related to dependence, it is important to understand their effects on nicotine dependence. Methods: This research comprised 2 studies. The first one consisted of a cross-sectional evaluation, in which the levels of the most important omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were compared between smokers and non-smokers in a sample of 171 individuals; of them, 120 were smokers and 51 were non-smokers. The other study was a clinical, double-blind, randomized, placebo controlled, in which 63 smokers received daily treatment with capsules of fish oil (a source of omega-3/3 g/day) or mineral oil (used as placebo, also 3 g/day), taken 3 times a day for 90 days. Each fish oil capsules contained approximately 210.99 mg EPA and 129.84 mg of DHA. The outcome was evaluated by means of psychometric and biological measures as well as self-reports of tobacco use. The evaluations were carried out at the beginning of treatment and once a month thereafter (total of 4 times). Outcomes: The omega-3 fatty acid lipid profile showed that smokers present lower concentrations of DHA. After treatment, the omega-3 group showed a significant reduction in their levels of dependence. Interpretation: Smokers showed lower peripheral levels of omega-3, and treatment with the most important omega-3 fatty acids brought about a reduction in nicotine dependence.


2021 ◽  
Vol 7 (4) ◽  
pp. 279-285
Author(s):  
Havvanur Yoldaş İlktaç ◽  
Nihal Büyükuslu ◽  
Cüneyd Parlayan

Polyamines play an important role in the maintenance of intestinal permeability. Therefore we aimed to determine the effects of probiotics and omega 3 fatty acids on serum polyamine levels in colitis. Fifty BALB/c mice were randomly grouped as normal, colitis with no treatment applied, colitis treated by probiotics (VSL#3), colitis treated by omega-3, and colitis treated by both probiotics and omega-3. Experimental colitis was induced by injection of 200 mg/kg 2,4-Dinitrobenzenesulfonic acid (DNBS). The probiotic and the omega-3 fatty acid supplements were applied daily by oral gavage. Serum polyamine levels were measured with high performance liquid chromatography (HPLC). In each group, the levels of serum polyamines are the highest in spermidine and the least in spermine. Bowel inflammation in experimentally induced colitis mice resulted in lower serum polyamine concentrations. In probiotic and omega 3 fatty acid supplemented group significant decreases were observed for spermine and spermidine (p<0.001), while no significant changes were obtained for putrescine. Combined supplementation of probiotics and omega-3 fatty acids for 10 days in colitis mice significantly decreased the serum levels of spermine and spermidine.


Lupus ◽  
2022 ◽  
pp. 096120332110679
Author(s):  
Nina Ramessar ◽  
Abhilasha Borad ◽  
Naomi Schlesinger

Objective Many rheumatologists are inundated with questions about what “natural remedies” and “anti-autoimmune diets” exist for decreasing Systemic Lupus Erythematosus (SLE) disease activity. Over the last three decades, there has been an abundance of data from several different trials about omega-3 fatty acids sourced from fish oil, but the findings have been contradictory. This review seeks to present this data so that evidence-based recommendations can be given to patients, supporting the use of an adjuvant regimen with their present immunosuppression. Methods A literature search was conducted using the PubMed, Google Scholar, MEDLINE, and Scopus electronic databases to retrieve relevant articles for this review. Trials conducted on human subjects with SLE with full publications in English were included from 1 January 1980 to 1 April 2021. The impact of fish oil-derived omega-3 fatty acid supplementation on specific clinical features, the innate and adaptive immune response, biomarkers, and disease activity measures were assessed. The initial search yielded 7519 articles, but only 13 met our criteria and were eligible for this review. Results Data from thirteen articles were assessed. Ten trials assessed disease activity as an outcome, with eight trials demonstrating an improvement in patients in the omega-3 fatty acid group as assessed by a validated clinical tool or individual patient criteria. There was a significant improvement in Systemic Lupus Activity Measure-Revised (SLAM-R) scores at week 12 ( p = .009) and week 24 ( p < .001). Additionally, a reduction of urinary 8-isoprostane, a non-invasive marker of disease activity, was observed. There was no treatment benefit seen with respect to renal parameters such as serum creatinine or 24-hour urine protein; or systemic parameters such as C3, C4, or anti-double stranded DNA (anti-dsDNA) levels regardless of the dose of the omega-3 LUPUS fatty acids or duration of the trial. Conclusion While there is conflicting evidence about the benefits of omega-3 fatty acid supplementation on SLE disease activity, specific measures have demonstrated benefits. Current data show that there is a potential benefit on disease activity as demonstrated by SLAM-R, Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), and British Isles Lupus Assessment Group (BILAG) scores and plasma membrane arachidonic acid composition and urinary 8-isoprostane levels, with minimal adverse events.


Author(s):  
Amy Larkin ◽  
Michael LaCouture ◽  
George Boutsalis ◽  
Harold Bays

Introduction: The less prominent role of triglycerides in determining cardiovascular risk keeps these lipids from being top-of-mind for practicing clinicians, yet epidemiologic data affirm that hypertriglyceridemia contributes to atherosclerotic disease development and progression. We sought to determine if online continuing medical education (CME) could improve the clinical knowledge and competence of primary care physicians (PCPs) and cardiologists regarding hypertriglyceridemia and the use of omega-3 fatty acids in its treatment. Methods: The effects of two educational interventions about advances in hypertriglyceridemia treatment (activity 1) and educating patients about omega-3 fatty acid products (activity 2) were analyzed to determine efficacy of online education presented in the form of online video-based roundtable discussions. The activities launched online in May and June, 2015 respectively, and data were collected through July, 2015. The effects of education were assessed using knowledge- and case-based matched pre-assessment/post-assessments. The effect sizes were calculated with Cohen’s d (> 0.8 is large, 0.8-0.4 is medium, and < 0.4 is small). Results: In total, 842 PCPs and 75 cardiologists who completed all pre/post assessment questions in any of the two activities during the study period were included in analyses. Significant overall improvements were seen for PCPs (activity 1: n = 452, P <.05, effect d= 0.68; activity 2: n = 390, P <.05, effect d= 0.96) and cardiologists (activity 1: n = 35, P <.05, effect d= 0.77; activity 2: n = 40, P <.05, effect d= 0.9). Compared with baseline, specific areas of improvements include: • 22% more PCPs and 31% more cardiologists identified weight loss as a nonpharmacological intervention that can effectively lower triglyceride levels for overweight/obese patients with hypertriglyceridemia, (both P < .05) • 35% more PCPs and 32% more cardiologists identified the appropriate dosing of prescription omega-3 fatty acids (both P <.05) • 23% more PCPs ( P < .05) and 20% more cardiologists ( P =.068 ) recognized that reducing the risk for pancreatitis is a primary medical objective in patients with severe elevations in triglyceride levels Areas identified as needing additional education include: • 57% of all physicians remain unaware that omega-3 fatty acids reduce apolipoprotein C3 • 61% of PCPs and 60% of cardiologists did not demonstrate a thorough understanding of the differences between prescription omega-3 fatty acids and omega-3 supplements Conclusion: This study demonstrates the success of a targeted educational intervention with two educational components on improving knowledge, competence, and clinical decision-making of PCPs and cardiologists regarding hypertriglyceridemia treatment and the role of omega-3 fatty acid products in its treatment.


Sign in / Sign up

Export Citation Format

Share Document