scholarly journals Preliminary Investigation of Effect of Neem-Derived Pesticides on Plasmopara halstedii Pathotype 704 in Sunflower under In Vitro and In Vivo Conditions

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 535
Author(s):  
Pratik Doshi ◽  
Nisha Nisha ◽  
Ahmed Ibrahim Alrashid Yousif ◽  
Katalin Körösi ◽  
Rita Bán ◽  
...  

Two neem-derived pesticides were examined under in vitro and in vivo conditions to test their efficacy in controlling Plasmopara halstedii pathotype 704, a causal agent of downy mildew in sunflower. All the tested concentrations of neem leaf extract and the highest concentration of commercial neem product significantly reduced the sporangial germination under in vitro conditions. In in vivo experiment, 3-days old pre-treated seedlings with both concentrations of neem leaf extract and the highest concentration of commercial product showed a significant reduction in the infection indicating possible systemic effect of neem. When the seedlings were treated following the infection with P. halstedii (i.e., post-treatment), only the highest concentrations of neem leaf extract and the commercial product showed a significant reduction in the infection indicating curative effect of neem. Possibilities for the control of P. halstedii with neem-derived pesticides are discussed.

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2765
Author(s):  
Christian Kraus ◽  
Rada Abou-Ammar ◽  
Andreas Schubert ◽  
Michael Fischer

In organic viticulture, copper-based fungicides are commonly used to suppress Downy Mildew infection, caused by the oomycete Plasmopara viticola. However, the frequent and intensive use of such fungicides leads to accumulation of the heavy metal in soil and nearby waters with adverse effects on the ecosystem. Therefore, alternative, organic fungicides against Downy Mildew are urgently needed to reduce the copper load in vineyards. In this study, the use of Warburgia ugandensis Sprague (Family Canellacea) leaf and bark extracts as potential fungicides against Downy Mildew were evaluated. In vitro (microtiter) and in vivo (leaf discs, seedlings) tests were conducted, as well as field trials to determine the efficacy of the extracts against Downy Mildew. The results revealed an MIC100 of 500 µg/mL for the leaf extract and 5 µg/mL for the bark extract. Furthermore, experiments with leaf discs and seedlings demonstrated a strong protective effect of the extracts for up to 48 h under (semi-) controlled conditions. However, in field trials the efficacy of the extracts distinctly declined, regardless of the extracts’ origin and concentration.


2015 ◽  
Vol 153 ◽  
pp. 45-54 ◽  
Author(s):  
Alti Dayakar ◽  
Sambamurthy Chandrasekaran ◽  
Jalaja Veronica ◽  
Shyam Sundar ◽  
Radheshyam Maurya

Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 309
Author(s):  
Olukayode O. Aremu ◽  
Adebola O. Oyedeji ◽  
Opeoluwa O. Oyedeji ◽  
Benedicta N. Nkeh-Chungag ◽  
Constance R. Sewani Rusike

Oxidative stress has gained attention as one of the fundamental mechanisms responsible for the development of hypertension. The present study investigated in vitro and in vivo antioxidant effects of 70% ethanol-water (v/v) leaf and root extracts of T. officinale (TOL and TOR, respectively). Total phenolic and flavonoid content of plant extracts were assessed using Folin Ciocalteau and aluminium chloride colorimetric methods; while, 2,2-diphenyl-1-picrlhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) protocols were used to determine the free radical scavenging and total antioxidant capacities (TAC), respectively. The in vivo total antioxidant capacity and malondialdehyde acid (MDA) levels for lipid peroxidation tests were performed on organ homogenate samples from Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats treated with leaf extract, TOL (500 mg/kg/day) and TOR (500 mg/kg/day) for 21 days. Results showed that compared to TOR, TOL possessed significantly higher (p < 0.01) polyphenol (4.35 ± 0.15 compared to 1.14 ± 0.01) and flavonoid (23.17 ± 0.14 compared to 3 ± 0.05) content; free radical scavenging activity (EC50 0.37 compared to 1.34 mg/mL) and total antioxidant capacities (82.56% compared to 61.54% ABTS, and 156 ± 5.28 compared to 40 ± 0.31 FRAP) and both extracts showed no toxicity (LD50 > 5000 mg/kg). TOL and TOR significantly (p < 0.01) elevated TAC and reduced MDA levels in targets organs. In conclusion, T. officinale leaf extract possesses significant anti-oxidant effects which conferred significant in vivo antioxidant protection against free radical-mediated oxidative stress in L-NAME-induced hypertensive rats.


1991 ◽  
Vol 75 (2) ◽  
pp. 271-276 ◽  
Author(s):  
Atsushi Teramura ◽  
Robert Macfarlane ◽  
Christopher J. Owen ◽  
Ralph de la Torre ◽  
Kenton W. Gregory ◽  
...  

✓ Laser energy of 480 nm was applied in 1-µsec pulses varying between 2.2 and 10 mJ to in vitro and in vivo models of cerebral vasospasm. First, the pulsed-dye laser was applied intravascularly via a 320-µm fiber to basilar artery segments from six dogs. The segments were mounted in a vessel-perfusion apparatus and constricted to, on average, 70% of resting diameter by superfusion with dog hemolysate. Immediate increase in basilar artery diameter occurred to a mean of 83% of control. In a second model, the basilar artery was exposed transclivally in the rabbit. In three normal animals, superfusion of the artery with rabbit hemolysate resulted in a reduction of mean vessel diameter to 81% of control. Following extravascular application of the laser, vessels returned to an average of 106% of the resting state. In six rabbits, the basilar artery was constricted by two intracisternal injections of autologous blood, 3 days apart. Two to 4 days after the second injection, the basilar artery was exposed. Extravascular laser treatment from a quartz fiber placed perpendicular to the vessel adventitia resulted in an immediate 53% average increase in caliber to an estimated 107% of control. No reconstriction was observed over a period of up to 5 hours. Morphologically, damage to the arterial wall was slight. This preliminary investigation suggests that the 1-µsec pulsed-dye laser may be of benefit in the treatment of cerebral vasospasm.


Author(s):  
Ganiyu Oboh ◽  
Veronica O. Odubanjo ◽  
Fatai Bello ◽  
Ayokunle O. Ademosun ◽  
Sunday I. Oyeleye ◽  
...  

AbstractAvocado pear (The inhibitory effects of extracts on AChE and BChE activities and antioxidant potentials (inhibition of FeThe extracts inhibited AChE and BChE activities and prooxidant-induced TBARS production in a dose-dependent manner, with the seed extract having the highest inhibitory effect and the leaf extract exhibiting higher phenolic content and radical scavenging abilities, but lower Fe chelation ability compared with that of the seed. The phytochemical screening revealed the presence of saponins, alkaloids, and terpenoids in both extracts, whereas the total alkaloid profile was higher in the seed extract than in the leaf extract, as revealed by GC-FID.The anti-cholinesterase and antioxidant activities of avocado leaf and seed could be linked to their phytoconstituents and might be the possible mechanisms underlying their use as a cheap and natural treatment/management of AD. However, these extracts should be further investigated in vivo.


2021 ◽  
Vol 17 (7) ◽  
pp. 1293-1304
Author(s):  
Zhuofei Zhao ◽  
Xiaona Lin ◽  
Lulu Zhang ◽  
Xia Liu ◽  
Qingwen Wang ◽  
...  

De novo designed lipidated methotrexate was synthesized and self-assembled into microbubbles for targeted rheumatoid arthritis theranostic treatment. Controlled lipidatedmethotrexate delivery was achieved by ultrasound-targetedmicrobubble destruction technique. Methotrexate was dissociated inflammatory microenvironment of synovial cavity, owing to representive low pH and enriched leucocyte esterase. We first manipulated methotrexate controlled release with RAW 264.7 cell line in vitro and further verified with rheumatoid arthritis rabbits in vivo. Results showed that lipidated methotrexate microbubbles precisely affected infection focus and significantly enhanced rheumatoid arthritis curative effect comparing with dissociative methotrexate. This study indicates that lipidated methotrexate microbubbles might be considered as a promising rheumatoid arthritis theranostics medicine.


2009 ◽  
Vol 6 (2) ◽  
pp. 227-231 ◽  
Author(s):  
S. A. Adesegun ◽  
A. Fajana ◽  
C. I. Orabueze ◽  
H. A. B. Coker

The antioxidant activities of crude extract ofPhaulopsis fascisepalaleaf were evaluated and compared with α-tocopherol and BHT as synthetic antioxidants and ascorbic acid as natural-based antioxidant.In vitro, we studied its antioxidative activities, radical-scavenging effects, Fe2+-chelating ability and reducing power. The total phenolic content was determined and expressed in gallic acid equivalent. The extract showed variable activities in all of thesein vitrotests. The antioxidant effect ofP. fascisepalawas strongly dose dependent, increased with increasing leaf extract dose and then leveled off with further increase in extract dose. Compared to other antioxidants used in the study, α-Tocopherol, ascorbic acid and BHT,P. fascisepalaleaf extract showed less scavenging effect on α,α,-diphenyl-β-picrylhydrazyl (DPPH) radical and less reducing power on Fe3+/ferricyanide complex but better Fe2+-chelating ability. These results revealed thein vitroantioxidant activity ofP.fascisepala.Further investigations are necessary to verify these activitiesin vivo.


2017 ◽  
Vol 12 (2) ◽  
pp. 33-44 ◽  
Author(s):  
Shaimaa Helmy El-Sayed ◽  
Neimat Amer ◽  
Soad Ismail ◽  
Iman Ali ◽  
Enas Rizk ◽  
...  

2018 ◽  
Vol 1 (3) ◽  
pp. 106-110
Author(s):  
Novi Irwan Fauzi ◽  
Seno Aulia Ardiansyah ◽  
Saeful Hidayat

Daun malaka (Phyllanthus emblica L.) mempunyai potensi digunakan sebagai alternatif obat antidiabetes. Daun malaka menunjukkan efek hipoglikemia pada tikus yang diinduksi aloksan. Namun, mekanisme kerjanya belum diketahui pasti. Penelitian ini dilakukan dalam rangka skrining mekanisme kerja daun malaka sebagai antidiabetes. Skrining mekanisme kerja dilakukan terhadap fraksi air daun malaka melalui uji aktivitas inhibisi enzim α-glukosidase serta α-amilase secara in vitro dan pengujian aktivitas insulin-sensitizer terhadap ekstrak daun malaka dengan metode tes toleransi insulin secara in vivo. Fraksi air daun malaka menunjukkan aktivitas inhibisi terhadap enzim α-glukosidase serta α-amilase dengan nilai IC50 (Inhibitor Concentration 50) pada kedua enzim tersebut berturut-turut adalah 0,87% dan 8,64% b/v. Pada uji aktivitas insulin sensitizer, pemberian ekstrak daun malaka dapat meningkatkan sensitivitas insulin pada tikus diabet dengan kondisi resistensi insulin. Nilai KTTI pada kelompok tikus diabet yang diberi ekstrak daun malaka dosis 100 dan 500 mg/kgbb tikus (74,89 dan 75,57) lebih tinggi dibandingkan kelompok tikus diabet (38,41) dan kadar glukosa darah yang lebih rendah selama interval waktu pengukuran. Daun malaka telah diketahui mampu meningkatkan sekresi insulin dan pada penelitian ini menunjukkan aktivitas inhibisi enzim α-glukosidase serta α-amilase secara in vitro dan menunjukkan aktivitas insulinsensitizer pada tikus diabet dengan kondisi resistensi insulin.   Malaka leaf (Phyllanthus emblica L.) has the potential to be used as an alternative antidiabetic drug. Malacca leaves showed hypoglycemia effect in rat induced by alloxan. However, the mechanism of action is not yet known. This study was conducted to evaluate the mechanism of action of Malaka leaves as antidiabetic. Screening of the mechanism of action was carried out on the water fraction of Malaka leaf  byinhibitory activity examination  on α-glucosidase and α-amylase by in vitro studyand Evaluation of insulin-sensitizer activity of Maaka leaf leaf extract was conducted by invivo  insulin tolerance test method. Malaka leaf water fraction showed inhibitory activity against the α-glucosidase and α-amylase with IC50 values ​​(Inhibitory Concentration 50)  of0.87% and 8.64% b / v on both enzyme, respectively. The evaluation of insulin sensitizer revelead that administration ofMalaka  leaf extract can increase insulin sensitivity in diabetic rat with insulin resistance.KTTI values ​​in diabetic rats given malaka extract  at the dose of 100 and 500 mg / kg BW (74.89 and 75.57) were higher than diabetics rat (38.41) and the extract also decrease blood glucose levels during measurement time intervals . Malaka leafhas been known to increase insulin secretion and the study showedthe  inhibitory activity on α-glucosidase and α-amylase by in vitro study and showed insulinsensitizer activity in diabetic rat with insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document