scholarly journals Growth, Physiology and Nutrient Use Efficiency in Eugenia dysenterica DC under Varying Rates of Nitrogen and Phosphorus

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 722 ◽  
Author(s):  
Daniele Nogueira dos Reis ◽  
Fabiano Guimarães Silva ◽  
Reginaldo da Costa Santana ◽  
Thales Caetano de Oliveira ◽  
Mariângela Brito Freiberger ◽  
...  

The production of high-quality seedlings and their use in commercial planting reduce pressure on natural areas. Eugenia dysenterica DC is a native fruit tree from the Brazilian Cerrado, whose nutritional requirements are still unclear. This study aimed to evaluate the effects of nitrogen (N) and phosphorus (P) supplementation on the physiology, growth and nutrient uptake, and use efficiencies of E. dysenterica seedlings grown in glasshouse conditions. The following rates were used in separate experiments: 0, 50, 100, 200, and 400 mg dm−3 N and 0, 100, 200, 400, and 600 mg dm−3 P. The experiment was conducted in a randomized block with four replications. The lowest N rate (50 mg dm−3) increased the stomatal conductance (gS) and, consequently, resulted in the highest transpiration (E), electron transport (ETR), and photosynthetic (A) rates. Also, rates of 50 mg dm−3 and 100 mg dm−3 N increased the Root Uptake Efficiency (RUE) and plant Nutrient Use Efficiency (NUE) for macronutrients and the RUE for micronutrients, stimulating plant growth. Phosphorous fertilization resulted in the maximum values for photosynthesis, electron transport rate, total dry mass, and NUE at the 200 mg dm−3 rate. The results of this study suggest that fertilization with 50 mg dm−3 N and 200 mg dm−3 P is suitable for the development of E. dysenterica seedlings.

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2396
Author(s):  
Muhammad Yaseen ◽  
Adeel Ahmad ◽  
Muhammad Naveed ◽  
Muhammad Asif Ali ◽  
Syed Shahid Hussain Shah ◽  
...  

Nitrogen (N) is an essential plant nutrient, therefore, N-deficient soils affect plant growth and development. The excessive and unwise application of N fertilizers result in nutrient losses and lower nutrient use efficiency that leads to the low crop productivity. Ammonia volatilization causes a major loss after N fertilization that causes environmental pollution. This experiment was conducted to evaluate the effectiveness of coating and uncoating N fertilizer in enhancing yield and nutrient-use efficiency with reduced ammonia emissions. The recommended rate of nitrogen and phosphorus, urea and di-ammonium phosphate (DAP) fertilizers were coated manually with 1% polymer solution. DAP (coated/uncoated) and potassium were applied at the time of sowing as subsurface application. While urea (coated/uncoated) was applied as surface and subsurface application. Results showed that nutrient use efficiencies of wheat were found to be maximum with the subsurface application of coated N fertilizer which increased nutrient-use efficiency by 44.57 (N), 44.56 (P) and 44.53% (K) higher than the surface application of uncoated N fertilizer. Ammonia emissions were found the lowest with subsurface-applied coated N fertilizer. Thus, coated fertilizer applied via subsurface was found the best technique to overcome the ammonia volatilization with an improvement in the yield and nutrient-use efficiency of wheat.


2020 ◽  
pp. 1-4
Author(s):  
S.J. Crittenden ◽  
J. Fitzmaurice ◽  
M. Lewis ◽  
K. Reid ◽  
B. Irvine

A total of 344 soil cores were taken in annually cropped fields of Alberta, Saskatchewan, Manitoba, and Ontario from 2011 to 2013 in areas where the field shapes, or obstacles within fields, required the driving pattern of farm operations to overlap. Soil nitrate-N concentrations in overlapping areas were 60% greater, soil Olsen-P concentrations were 23% greater, and pH was 0.5 units greater at 0–15 cm depth compared with non-overlapping areas, suggesting smaller nutrient use efficiency and potential for greater nutrient loss.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 397 ◽  
Author(s):  
Virupax C. Baligar ◽  
Marshall K. Elson ◽  
Alex-Alan F. Almeida ◽  
Quintino R. de Araujo ◽  
Dario Ahnert ◽  
...  

Cacao (Theobroma cacao L.) was grown as an understory tree in agroforestry systems where it received inadequate to adequate levels of photosynthetic photon flux density (PPFD). As atmospheric carbon dioxide steadily increased, it was unclear what impact this would have on cacao growth and development at low PPFD. This research evaluated the effects of ambient and elevated levels carbon dioxide under inadequate to adequate levels of PPFD on growth, physiological and nutrient use efficiency traits of seven genetically contrasting juvenile cacao genotypes. Growth parameters (total and root dry weight, root length, stem height, leaf area, relative growth rate and net assimilation rates increased, and specific leaf area decreased significantly in response to increasing carbon dioxide and PPFD. Increasing carbon dioxide and PPFD levels significantly increased net photosynthesis and water-use efficiency traits but significantly reduced stomatal conductance and transpiration. With few exceptions, increasing carbon dioxide and PPFD reduced macro–micro nutrient concentrations but increased uptake, influx, transport and nutrient use efficiency in all cacao genotypes. Irrespective of levels of carbon dioxide and PPFD, intraspecific differences were observed for growth, physiology and nutrient use efficiency of cacao genotypes.


2003 ◽  
Vol 33 (11) ◽  
pp. 2184-2192 ◽  
Author(s):  
Kuo-Chuan Lin ◽  
Steven P Hamburg ◽  
Sheng-lin Tang ◽  
Yue-Joe Hsia ◽  
Teng-Chiu Lin

The litterfall in a subtropical broadleaf forest within the Fushan Experimental Forest in northeastern Taiwan was monitored for 9 years. Mean annual litterfall was very sensitive to typhoon frequency and intensity, ranging from 3 to 11 Mg·ha–1·year–1. Litterfall was significantly higher in years with strong typhoons than in years without typhoons, and the number of strong typhoons explained 82% of interannual variation in litterfall. Nutrient-use efficiency (dry mass/nutrients in litterfall) was high for N, but low for P compared with other tropical forests. This result supports the idea that the study forest is P limited but not N limited. Nutrient loss via litterfall represents a large percentage of aboveground biomass, especially during years with strong typhoons (e.g., 19%–41%, 15%–40%, 5%–12%, for N, P, and K, respectively). Forests that experience infrequent wind disturbance (e.g., temperate or boreal forests) can gradually regain any lost nutrients prior to the next disturbance; this is different from the situation observed in the Fushan Experimental Forest. At Fu-shan the pattern of not responding to typhoons with a flush of new growth appears to be an adaptation to the frequency with which there are multiple typhoons affecting the forest in a single year. Nutrient loss in litterfall caused by frequent typhoon disturbances appears to limit tree growth and contributes to the very low canopy height of the Fushan Experimental Forest.


1989 ◽  
Vol 19 (3) ◽  
pp. 309-317 ◽  
Author(s):  
Cindy E. Prescott ◽  
John P. Corbin ◽  
Dennis Parkinson

Aboveground biomass, annual production, and internal nitrogen and phosphorus dynamics of vegetation were compared among a 90-year-old Pinuscontorta Loudon forest, a 120-year-old Piceaglauca (Moench) Voss–P. contorta forest, a 350-year-old Piceaengelmannii Parry ex Engelm.–Abieslasiocarpa (Hook.) Nutt. forest, and a 13-year-old P. contorta stand in the Rocky Mountains of southwestern Alberta. Aboveground biomass of vegetation ranged from 109 to 203 t•ha−1, while aboveground net primary productivity ranged from 4.4 to 5.3 t•ha−1•year−1 in the mature forests. Approximately 30% of the N and 20–40% of the P in ground vegetation were reabsorbed during senescence; 40–50% of the N and 50–80% of the P were reabsorbed from senescing tree foliage. Annual uptake of nutrients (production minus reabsorption) was between 1.8 and 2.2 g•m−2•year−1 for N and 0.2–0.4 g•m−2•year−1 for P. Efficiency of nutrient use (milligrams of new biomass produced per milligram of nutrient taken up in 1 year) ranged from 249 to 262 for N and 1604 to 2355 for P in the mature forests, and 72 and 642, respectively, in the young pine stand. Both N and P were used very efficiently in the pine forest and relatively inefficiently in the spruce–pine forest, reflecting differences in the inherent nutrient-use efficiency of these tree species. In the spruce–fir forest, N was used less efficiently and P more efficiently than in other forests, in response to lower phosphorus availability in this forest. Differences in nutrient-use efficiency of vegetation were related to differences in the amount of biomass produced per unit amount of N or P taken up, and not to differences in efficiency of N or P reabsorption.


1985 ◽  
Vol 63 (8) ◽  
pp. 1476-1481 ◽  
Author(s):  
Ralph E. J. Boerner

To determine the relative importance of soil moisture and soil nutrient availability in determining levels of nutrient use efficiency, seasonal nutrient dynamics and growth rates were determined for individuals of Hamamelis virginiana L., an understory tree, in three forest microsites. The mixed oak site had the lowest levels of soil nutrients and moisture, the mixed mesophytic site the highest nutrient availability, and the valley bottom the highest moisture levels. Foliar nitrogen and phosphorus levels declined over the season in all trees, while calcium levels increased with time. Relative growth rates did not differ significantly among sites, though growth varied inversely with tree mass. Proportional nitrogen resorption was highest in trees at the fertile mesophytic site. Phosphorus and calcium use efficiency were higher at the infertile mixed oak site than the others, and phosphorus resorption was highest in trees from the mixed oak site. Projected nitrogen uptake needs for the next growing season were least at the mixed mesophytic site, while projected phosphorus uptake needs were least at the mixed oak site. Within the ranges of moisture and soil pH – nutrient availability present, growth and nitrogen dynamics seemed most closely correlated to soil moisture, and phosphorus dynamics to phosphorus availability. This differential dependence among elements on moisture levels is suggested to be the underlying reason for differences in the form of the relationship between proportional resorption and soil availability of N and P for a variety of woody species.


2020 ◽  
Vol 9 (10) ◽  
pp. e9969109433
Author(s):  
Valdevan Rosendo dos Santos ◽  
Leonardo Correia Costa ◽  
Antonio Márcio Souza Rocha ◽  
Cícero Gomes dos Santos ◽  
Márcio Aurélio Lins dos Santos ◽  
...  

The high biomass production of certain cover crops species is due to their high absorption capacity and nutrients use efficiency. Its potential for biomass production it is important to obtain productive plants using nutritional information especially in environments with low nutrient apport. The objective was to evaluate the biomass accumulation, extraction and nutrient use efficiency by cover crops growing in a soil of low fertility. The treatments were arranged in four randomized blocks, composed of seven cover crops: sunn hemp, spectabilis, pigeon pea forage, pigeon pea arbore, lab lab, jack bean and mucuna. To evaluate dry mass accumulation, crop growth rate and leaf area index, six plants were used in different times: 30, 45, 60, 75, 90 and 105 days after sowing. The cover crops differed in vegetative cycle, dry mass accumulation, yield, extraction and nutrient use efficiency, with better performance presented by pigeon pea arbore. The cover crops are good recyclers of nutrients, particularly nitrogen, potassium and calcium and have potential for use in the cultivation systems in the Northeast of Brazil.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Mary Dixon ◽  
Guodong Liu

Tomato is in high demand because of its taste and health benefits. In Florida, tomato is the number one vegetable crop in terms of both acreage and value. Because of its high value and wide acreage, it is important for tomato production to be efficient in its water and nutrient use, which may be improved through fertigation practices. Therefore, the objective of this new 7-page article is to disseminate research-based methods of tomato production utilizing fertigation to enhance yield and nutrient use efficiency. Written by Mary Dixon and Guodong Liu, and published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs1392


2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


2021 ◽  
Vol 192 ◽  
pp. 103181
Author(s):  
Jagadish Timsina ◽  
Sudarshan Dutta ◽  
Krishna Prasad Devkota ◽  
Somsubhra Chakraborty ◽  
Ram Krishna Neupane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document