scholarly journals Endophytic Strain Bacillus subtilis 26DCryChS Producing Cry1Ia Toxin from Bacillus thuringiensis Promotes Multifaceted Potato Defense against Phytophthora infestans (Mont.) de Bary and Pest Leptinotarsa decemlineata Say

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1115
Author(s):  
Antonina Sorokan ◽  
Galina Benkovskaya ◽  
Guzel Burkhanova ◽  
Darya Blagova ◽  
Igor Maksimov

Novel properties of a previously obtained Bacillus subtilis 26DCryChS strain are described. The B. subtilis 26DCryChS strain is able to produce Cry1Ia δ-endotoxin from B. thuringiensis B-5351 and to exist in internal plant tissues of potato plants in the same manner as the endophytic B. subtilis 26D source strain (487 ± 53 and 420 ± 63 CFU*103/g, respectively). B. subtilis 26DCryChS, as much as the original B. subtilis 26D strain, inhibited mycelium growth of oomycete Phytophthora infestans (Mont.) de Bary and reduced late blight symptoms development on plants by 35% compared with non-treated ones, as well as showed insecticidal activity against Leptinotarsa decemlineata. Production of the fluorescent GFP protein in the B. subtilis 26D genome allowed visualizing the endophytes around damaged sites on beetle intestines. Bacillus strains under investigation induced systemic resistance to P. infestans and L. decemlineata through the activation of the transcription of PR genes in potato plants. Thus, the B. subtilis 26DCryChS strain was able to induce transcription of jasmonate-dependent genes and acquired the ability to promote transcription of a salicylate-dependent gene (PR1) in plants infected with the late blight agent and damaged by Colorado potato beetle larvae. The B. subtilis 26DCryChS strain could be put forward as a modern approach for biocontrol agents design.

2019 ◽  
Author(s):  
Youyou Wang ◽  
Congying Zhang ◽  
Lufang Wu ◽  
Le Wang ◽  
Wenbin Gao ◽  
...  

ABSTRACTPotato late blight triggered by Phytophthora infestans ((Mont.) de Bary) represents a great food security threat worldwide and is difficult to control. Currently, Bacillus spp. have been considered biocontrol agents to control many fungal diseases. Here, Bacillus subtilis WL-2 was selected as the antifungal strain with the most potential against P. infestans mycelium growth. Additionally, the functional metabolites extracted from WL-2 were identified as IturinA-family cyclic lipopeptides (CLPs) via high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS). Analyses using scanning and transmission electron microscopy (SEM and TEM) revealed that IturinA caused a change in the mycelial surface and damage to the internal cell structure, including cell membrane disruption and irregular organelle formation. Moreover, propidium iodide staining and nucleic acid and protein release were detected to clarify the cell membrane damage caused by IturinA. Additionally, IturinA triggered reactive oxygen species (ROS) generation and malondialdehyde (MDA) production. Mitochondrial membrane potential (MMP), mitochondrial respiratory chain complexes activity (MRCCA), respiratory control rate (RCR), and oxidative phosphorylation efficiency (P/O) assays indicated that P. infestans mitochondria affected by IturinA were so seriously damaged that the MMP and MRCCA declined remarkably and that mitochondrial ATP production ability was weakened. Therefore, IturinA induces cell membrane damage, oxidative stress, and dysfunction of mitochondria, resulting in P. infestans hyphal cell death. As such, the results highlight that B. subtilis WL-2 and IturinA have great potential as candidates for inhibiting P. infestans mycelium growth and controlling potato late blight.IMPORTANCEPotato (Solanum tuberosum L.) is the fourth most common global food crop, and its planting area and yield increase yearly. Notably, in 2015, China initiated a potato staple food conversion strategy, and by 2020, approximately 50% of potatoes will be consumed as a staple food. The plant pathogen fungus Phytophthora infestans ((Mont.) de Bary) is the culprit of potato late blight; however, biological agents rather than chemicals are highly necessary to control this threatening disease. In this study, we discovered an antifungal substance, IturinA, a lipopeptide produced by Bacillus subtilis WL-2. Moreover, our research revealed the actual mechanism of IturinA against P. infestans mycelium growth and clarified the potential of B. subtilis WL-2 and IturinA as a biocontrol agent against P. infestans mycelium growth as well as for controlling the development of late blight in potato cultivation.


2019 ◽  
Vol 22 ◽  
pp. 101366 ◽  
Author(s):  
Bhimanagoud Kumbar ◽  
Riaz Mahmood ◽  
S.N. Nagesha ◽  
M.S. Nagaraja ◽  
D.G. Prashant ◽  
...  

Author(s):  
А.В. Сорокань ◽  
Г.В. Беньковская ◽  
Д. К. Благова ◽  
Т.И. Максимова ◽  
И.В. Максимов

Насекомые-фитофаги и растения-хозяева обладают набором микросимбионтов, с которыми составляют единую коэволюционирующую систему. Комплекс микросимбионтов принимает активное участие в стресс-ответе макросимбионта. Нами выявлено, что обработка растений картофеля эндофитными штаммами бактерий Bacillus thuringiensis var. thuringiensis (B-5689), B. th. var. kurstaki (B-5351) и Bacillus subtilis 26Д снижает выживаемость на них колорадского жука Leptino- tarsa decemlineata Say. Штаммы B. th. подавляли активность фенолоксидаз и ацетилхолинэстеразы в гемолимфе колорадского жука. Обнаружено антагонистическое взаимодействие эндофитной бактерии B. subtilis 26Д с симбиотическими бактериями колорадского жука из рода Acinetobacter и Enterobacter, при этом Acinetobacter spp. подавлял рост колоний эндофитов. Рекомбинантный штамм B. subtilis 26ДСгу, содержащий ген -эндотоксина crylla из B. th. var. kurstaki, сочетал способность исходного штамма B. subtilis 26Д подавлять развитие симбионтов жука и иммунные реакции насекомого с продукцией Cry-токсина, что и приводило к высокой смертности фитофага.


ÈKOBIOTEH ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 135-142
Author(s):  
L.G. Yarullina ◽  
◽  
E.A. Cherepanova ◽  
V.O. Tsvetkov ◽  
G.F. Burkhanova ◽  
...  

There was researched the effect of Bacillus subtilis bacteria in combination with salicylic (SA) and jasmonic (JA) acids on the state of the pro / antioxidant system (hydrogen peroxide content, catalase, peroxidase, superoxide dismutase activity) in connection with the development of potato resistance to late blight pathogen - oomycete Phytophthora infestans (Mont.) de Bary under moisture deficit conditions. Plants grown from microtubers of the Rannyaya Rosa cultivar were sprayed with a suspension of B. subtilis (108 cells / ml) and a mixture of bacteria with SA (10-6 M), JA (10-7 M), SA + JA (1:1). 3 days after treatment, the plants were infected with P. infestans (105 spores / ml) and cultivated under artificial soil drought conditions by reducing irrigation. When soil moisture reached 40±5% (7 days after infection), biochemical parameters were assessed in plants. A decrease in the degree of leaves damage by P. infestans was revealed when treated with B. subtilis in combination with SA and JA. The mechanism of increasing the resistance of potato plants to late blight when treated with Bacillus subtilis bacteria in combination with signaling molecules under conditions of drought was associated with the accumulation of H2O2 and modulation of antioxidant enzymes activity.


Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1269-1277 ◽  
Author(s):  
Mélissa Si Ammour ◽  
Guillaume J. Bilodeau ◽  
David Mathieu Tremblay ◽  
Hervé Van der Heyden ◽  
Thaer Yaseen ◽  
...  

Real-time loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) assays were developed targeting the internal transcribed spacer 2 region of the ribosomal DNA of Phytophthora infestans, the potato late blight causal agent. A rapid crude plant extract (CPE) preparation method from infected potato leaves was developed for on-site testing. The assay’s specificity was tested using several species of Phytophthora and other potato fungal and oomycete pathogens. Both LAMP and RPA assays showed specificity to P. infestans but also to the closely related species P. andina, P. mirabilis, P. phaseoli, and P. ipomoeae, although the latter are not reported as potato pathogen species. No cross-reaction occurred with P. capsici or with the potato pathogens tested, including P. nicotianae and P. erythroseptica. The sensitivity was determined using P. infestans pure genomic DNA added into healthy CPE samples. Both LAMP and RPA assays detected DNA at 50 fg/μl and were insensitive to CPE inhibition. The isothermal assays were tested with artificially inoculated and naturally infected potato plants using a Smart-DART platform. The LAMP assay effectively detected P. infestans in symptomless potato leaves as soon as 24 h postinoculation. A rapid and accurate on-site detection of P. infestans in plant material using the LAMP assay will contribute to improved late blight diagnosis and early detection of infections and facilitate prompt management decisions.


2007 ◽  
Vol 97 (10) ◽  
pp. 1274-1283 ◽  
Author(s):  
Yigal Cohen ◽  
Ulrich Gisi

Three carboxylic acid amide (CAA) fungicides, mandipropamid (MPD), dimethomorph (DMM) and iprovalicarb (IPRO) were examined for their effects on various asexual developmental stages of Phytophthora infestans in vitro and in planta. Germination of cystospores and direct germination of sporangia were inhibited with nanomole concentrations of MPD (0.005 μg/ml) and micromole concentrations of DMM (0.05 μg/ml) or IPRO (0.5 μg/ml). A temporary exposure of 1 h to CAAs was not detrimental to germination and infectivity of sporangia or cystospores. CAAs applied to cystospores at 1 h after the onset of germination did not prevent the emergence of germ tubes, but inhibited their further growth and deformed their shape. None of the fungicides affected discharge of zoospores from sporangia or the encystment (cell wall formation/assembly) of the zoospores. Mycelium growth in solid or liquid media was inhibited with micromole concentrations. CAAs mixed with sporangia and drop inoculated onto detached leaves strongly suppressed infection. Curative application at 1 day postinoculation (dpi) required higher concentrations of CAAs than preventive application to inhibit infection and lost its effectiveness at 2 dpi. When sprayed on established late blight lesions 4 days after inoculation, CAAs reduced sporangial production in a dose-dependent manner. Trans-laminar protection of potato or tomato leaves, although achieved with higher doses, was more effective with MPD than with DMM or IPRO. Shade house studies demonstrated superior control of late blight epidemics by MPD compared with the other molecules. The data suggest that germ tube formation by cystospores or sporangia is the most sensitive stage in the life cycle of P. infestans to CAAs. Of the three CAAs, MPD had the highest intrinsic activity against spore germination. This property, together with its better trans-laminar activity, makes MPD more effective than DMM or IPRO in controlling epidemics caused by P. infestans.


2015 ◽  
Author(s):  
Khaoula Belhaj ◽  
Liliana M. Cano ◽  
David C. Prince ◽  
Ariane Kemen ◽  
Kentaro Yoshida ◽  
...  

AbstractThe oomycete pathogen Phytophthora infestans causes potato late blight, and as a potato and tomato specialist pathogen, is seemingly poorly adapted to infect plants outside the Solanaceae. Here, we report the unexpected finding that P. infestans can infect Arabidopsis thaliana when another oomycete pathogen, Albugo laibachii, has colonized the host plant. The behaviour and speed of P. infestans infection in Arabidopsis pre-infected with A. laibachii resemble P. infestans infection of susceptible potato plants. Transcriptional profiling of P. infestans genes during infection revealed a significant overlap in the sets of secreted-protein genes that are induced in P. infestans upon colonisation of potato and susceptible Arabidopsis, suggesting major similarities in P. infestans gene expression dynamics on the two plant species. Furthermore, we found haustoria of A. laibachii and P. infestans within the same Arabidopsis cells. This Arabidopsis - A. laibachii - P. infestans tripartite interaction opens up various possibilities to dissect the molecular mechanisms of P. infestans infection and the processes occurring in co-infected Arabidopsis cells.


2021 ◽  
Vol 22 (21) ◽  
pp. 11423
Author(s):  
Chunxin Liu ◽  
Yiyao Zhang ◽  
Yinxiao Tan ◽  
Tingting Zhao ◽  
Xiangyang Xu ◽  
...  

Phytophthora infestans (P. infestans) recently caused epidemics of tomato late blight. Our study aimed to identify the function of the SlMYBS2 gene in response to tomato late blight. To further investigate the function of SlMYBS2 in tomato resistance to P. infestans, we studied the effects of SlMYBS2 gene knock out. The SlMYBS2 gene was knocked out by CRISPR-Cas9, and the resulting plants (SlMYBS2 gene knockout, slmybs2-c) showed reduced resistance to P. infestans, accompanied by increases in the number of necrotic cells, lesion sizes, and disease index. Furthermore, after P. infestans infection, the expression levels of pathogenesis-related (PR) genes in slmybs2-c plants were significantly lower than those in wild-type (AC) plants, while the number of necrotic cells and the accumulation of reactive oxygen species (ROS) were higher than those in wild-type plants. Taken together, these results indicate that SlMYBS2 acts as a positive regulator of tomato resistance to P. infestans infection by regulating the ROS level and the expression level of PR genes.


Sign in / Sign up

Export Citation Format

Share Document