scholarly journals Nitric Oxide Signaling in Plants

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1550
Author(s):  
John T. Hancock

Nitric oxide (NO) is an integral part of cell signaling mechanisms in animals and plants. In plants, its enzymatic generation is still controversial. Evidence points to nitrate reductase being important, but the presence of a nitric oxide synthase-like enzyme is still contested. Regardless, NO has been shown to mediate many developmental stages in plants, and to be involved in a range of physiological responses, from stress management to stomatal aperture closure. Downstream from its generation are alterations of the actions of many cell signaling components, with post-translational modifications of proteins often being key. Here, a collection of papers embraces the differing aspects of NO metabolism in plants.

2020 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Caroline Ran ◽  
Julia M. Michalska ◽  
Carmen Fourier ◽  
Christina Sjöstrand ◽  
Elisabet Waldenlind ◽  
...  

Cluster headache is characterized by activation of the autonomic-trigeminal reflex. Nitric oxide can trigger headaches in patients, and nitric oxide signaling is known to be affected in cluster headache. Based on the hypothesis of nitric oxide being involved in cluster headache pathophysiology we investigated nitric oxide synthases as potential candidate genes for cluster headache. We analyzed eight variants in the three forms of nitric oxide synthase (NOS) genes, inducible NOS (iNOS), endothelial NOS (eNOS) and neuronal NOS (nNOS), and tested for association with cluster headache. Swedish cluster headache patients (n = 542) and controls (n = 581) were genotyped using TaqMan® assays on an Applied Biosystems 7500 qPCR cycler. This is the largest performed genetic study on NOS involvement in cluster headache so far. We found an association between cluster headache and one iNOS haplotype consisting of the minor alleles of rs2297518 and rs2779249 (p = 0.022). In addition, one of the analyzed nNOS variants, rs2682826, was associated with reported triptan use (p = 0.039). Our data suggest that genetic variants in NOS genes do not have a strong influence on cluster headache pathophysiology, but that certain combinations of genetic variants in NOS genes may influence the risk of developing the disorder or triptan use.


2009 ◽  
Vol 110 (1) ◽  
pp. 166-181 ◽  
Author(s):  
Noboru Toda ◽  
Shiroh Kishioka ◽  
Yoshio Hatano ◽  
Hiroshi Toda ◽  
David S. Warner ◽  
...  

Nitric oxide (NO) plays pivotal roles in controlling physiological functions, participates in pathophysiological intervention, and is involved in mechanisms underlying beneficial or untoward actions of therapeutic agents. Endogenous nitric oxide is formed by three isoforms of nitric oxide synthase: endothelial, neurogenic and inducible. The former two are constitutively present mainly in the endothelium and nervous system, respectively, and the latter one is induced by lipopolysaccharides or cytokines mainly in mitochondria and glial cells. Constitutively formed nitric oxide modulates the actions of morphine and related analgesics by either enhancing or reducing antinociception. Tolerance to and dependence on morphine or its withdrawal syndrome are likely prevented by nitric oxide synthase inhibition. Information concerning modulation of morphine actions by nitric oxide is undoubtedly useful in establishing new strategies for efficient antinociceptive treatment and for minimizing noxious and unintended reactions.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Fangjun Chen ◽  
Yifei Xu ◽  
Jing Wang ◽  
Xufeng Yang ◽  
Hongying Cao ◽  
...  

In this study, we investigated the relaxation effect and mechanisms of patchouli alcohol (PA) on rat corpus cavernosum. Corpus cavernosum strips were used in organ baths for isometric tension studies. The results showed that PA demonstrated concentration-dependent relaxation effect on rat corpus cavernosum. The relaxant response to PA was not influenced by tetrodotoxin and atropine while it was significantly inhibited by removal of endothelium. L-NG-nitroarginine methyl ester (L-NAME, a nitric oxide synthase inhibitor) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, a soluble guanylate cyclase inhibitor) significantly inhibited relaxation response to PA, whereas indomethacin (COX inhibitor) had no effect on PA-induced relaxation. The treatment of endothelium-deprived corpus cavernosum with several potassium channel blockers including tetraethylammonium (TEA), 4-aminopyridine (4-AP), and glibenclamide had no effect on PA-induced relaxation. Endothelium-deprived corpus cavernosal contractions induced by cumulative addition of Ca2+ to high KCl solution without CaCl2 were significantly inhibited by PA. Also, PA improved relaxant capacity of sildenafil in rat corpus cavernosum. In addition, the perfusion with PA significantly increased the levels of cGMP and expression of mRNA and protein of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS). Furthermore, intracavernous injection of PA enhanced the rise in intracavernous pressure in rats during cavernosal nerve electric stimulation. In conclusion, PA relaxed the rat corpus cavernosum attributed to both endothelium-dependent and -independent properties. While the former component was mostly involved in nitric oxide signaling pathway, the endothelium-independent mechanism involved in PA-induced relaxation was probably linked to calcium antagonism.


2019 ◽  
Vol 8 (12) ◽  
pp. 2051 ◽  
Author(s):  
Armita Mahdavi Gorabi ◽  
Nasim Kiaie ◽  
Saeideh Hajighasemi ◽  
Maciej Banach ◽  
Peter E. Penson ◽  
...  

In addition to their cholesterol-lowering effects, statins are associated with pleiotropic effects including improvements in heart failure (HF), reduced blood pressure, prevention of the rupture of atherosclerotic plaques and improved angiogenesis. In addition to these cardiovascular benefits, statins have been implicated in the treatment of neurological injuries, cancer, sepsis, and cirrhosis. These cholesterol-independent beneficial effects of statins are predominantly mediated through signaling pathways leading to increased production and bioavailability of nitric oxide (NO). In this review, the mechanistic pathways and therapeutic effects of statin-mediated elevations of NO are described and discussed.


Sign in / Sign up

Export Citation Format

Share Document