scholarly journals The Woody Planet: From Past Triumph to Manmade Decline

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1593
Author(s):  
Laurence Fazan ◽  
Yi-Gang Song ◽  
Gregor Kozlowski

Woodiness evolved in land plants approximately 400 Mya, and very soon after this evolutionary invention, enormous terrestrial surfaces on Earth were covered by dense and luxurious forests. Forests store close to 80% of the biosphere’s biomass, and more than 60% of the global biomass is made of wood (trunks, branches and roots). Among the total number of ca. 374,000 plant species worldwide, approximately 45% (138,500) are woody species—e.g., trees, shrubs or lianas. Furthermore, among all 453 described vascular plant families, 191 are entirely woody (42%). However, recent estimations demonstrate that the woody domination of our planet was even greater before the development of human civilization: 1.4 trillion trees, comprising more than 45% of forest biomass, and 35% of forest cover disappeared during the last few thousands of years of human dominance on our planet. The decline in the woody cover of Planet Earth did not decelerate during the last few centuries or decades. Ongoing overexploitation, land use and climate change have pushed ten thousand woody species to the brink of extinction. Our review highlights the importance, origin and past triumph of woody species and summarizes the unprecedented recent decline in woody species on our planet.

Ecology ◽  
2016 ◽  
Author(s):  
Laszlo Nagy

Temperature decreases with latitude from the equator to the poles and with elevation from the lowlands to mountains peaks. A parallel change in biota, most apparent in how plant growth forms give rise to a sequence of tree-dominated biomes/vegetation belts, from tropical lowland evergreen rain forest to boreal taiga or upper montane forest, until tree growth form is no longer sustainable (latitudinal and elevational treelines) and the landscape changes into open low-stature shrub and forb vegetation: polar tundra at high latitudes and alpine vegetation in the mountains. While the concept of tundra biome is well established, no such thing as an “alpine biome” is recognized by most biogeographers. Biogeographically, the alpine “biome” is rather heterogeneous as it encompasses the climatically treeless cold-limited portions of mountain environments in all latitude climate/life zones from the tropics to the poles. The total extent of the alpine biome is estimated at being c. 3 percent of the total land surface of the Earth, where about 4 percent of known vascular plant species occur. The regional biological richness of alpine ecosystems is highly variable across continents, ranging from c. 200 plant species in the east African high volcanic mountains to more than 3,000 species in the north Andean “páramos.” Our knowledge of alpine ecosystems is uneven when mountains are considered worldwide. The Alps and other European mountains are well described botanically and zoologically, allowing comparative biogeographical analyses. Ecological and ecophysiological research in alpine ecosystems has been focusing on diversity/productivity-environment (primarily [micro-]climate) relationships: species acclimation, tolerance, and evolution, the bases of dispersal and distribution. The alpine biome has recently become a test field of the stress-gradient hypothesis and the focus of climate change impact studies, largely through modeling. The history and phylogeography of alpine organisms is also an active field. The number of population and community level studies is small in alpine ecosystems, and they are mostly associated with studying disturbance factors, such as (over)grazing or atmospheric deposition. While ecosystem services that alpine environments contribute to human well-being are increasingly being recognized, their sustainable use largely remains a theoretical consideration. Following major changes in land use in the 1960s, a large proportion of the biome is protected in economically developed countries; in developing countries it continues to provide important goods and services for sustaining local livelihoods. Initiatives are ongoing to undertake long-term integrated research to observe and report changes to the structure and functioning of alpine ecosystems in response to climate change and human land use.


Phytotaxa ◽  
2016 ◽  
Vol 249 (1) ◽  
pp. 118 ◽  
Author(s):  
FARSHID MEMARIANI ◽  
MOHAMMAD REZA JOHARCHI ◽  
HOSSEIN AKHANI

Ghorkhod Protected Area (GPA) is located in a transitional zone among different biogeographical units in North Khorassan Province, NE Iran. The study area is mainly a mountainous region in western extensions of Khorassan-Kopet Dagh floristic province. We investigated the floristic composition, life form spectrum and phytogeography of the study area through several random collection efforts and 200 vegetation samples (reléves) in selected vegetation types during 2007–2012. A total of 663 vascular plant species belonging to 367 genera and 81 families are recorded as native and naturalized in GPA. Angiosperms and Dicots are among the most diverse plant groups. The richest plant families are Asteraceae (88 species), Poaceae (78), Lamiaceae (45), Brassicaceae (43), Fabaceae (38), and Caryophyllaceae (32). The genera Allium L. (17 species), Astragalus L. (15) and Cousinia Cass. (12) are the richest ones, however, the majority of the species belongs to oligotypic and monotypic genera. Life form spectrum of the study area is dominated by hemicryptophytes (38.9%) and therophytes (23.4%). Allium transvestiens Vved., Agropyron desertorum Schult., Helictotrichon turcomanicum Czopanov and Piptatherum latifolium (Roshev.) Nevski are recorded as new to Iran. The core flora of the area has the Irano-Turanian origin. However, the wide-range and widespread elements are also well represented in the study area. GPA is inhabited by several endemic, rare and narrow-range plant species, indicating the biodiversity importance of the study area in NE Iran.


2016 ◽  
Vol 5 (1) ◽  
pp. 29-45 ◽  
Author(s):  
Md Anwarul Islam ◽  
Mohammad Mahfuzur Rahman ◽  
Gazi Mosharof Hossain

The present study dealt with the exploration and documentation of the floristic composition and phyto-diversity of Sitakunda Eco-park, Chittagong, Bangladesh. A total of 412 vascular plant species under 315 genera belonging to 94 plant families have been recorded from the study area during February, 2013 to April, 2015. Out of these recorded taxa, 330 were dicotyledons, 62 were monocotyledons, 5 were gymnosperms and 15 were pteridophytes. Among those, the maximum 144 species belonged to herbs followed by 138, 75 and 55 species as trees, shrubs and climbers, respectively. The species composition among the plant families varied in plant groups. In dicotyledonous group, Euphorbiaceae appeared to be the largest family with 35 species, whereas Poaceae showed the largest family containing 30 species among monocotyledonous group. The highest values of both Shannon-Weiner and Simpson diversity indices have been observed as 3.82 and 0.98, respectively to site D during monsoon season, whereas the lowest values 3.19 and 0.95, respectively of these indices were recorded in site A during summer season.Jahangirnagar University J. Biol. Sci. 5(1): 29-45, 2016 (June)


2012 ◽  
Vol 9 (8) ◽  
pp. 3437-3447 ◽  
Author(s):  
A. M. R. Petrescu ◽  
R. Abad-Viñas ◽  
G. Janssens-Maenhout ◽  
V. N. B. Blujdea ◽  
G. Grassi

Abstract. While the Emissions Database for Global Atmospheric Research (EDGAR) focuses on global estimates for the full set of anthropogenic activities, the Land Use, Land-Use Change and Forestry (LULUCF) sector might be the most diverse and most challenging to cover consistently for all countries of the world. Parties to United Nations Framework Convention on Climate Change (UNFCCC) are required to provide periodic estimates of greenhouse gas (GHG) emissions, following the latest approved methodological guidance by the International Panel on Climate Change (IPCC). The current study aims to consistently estimate the carbon (C) stock changes from living forest biomass for all countries of the world, in order to complete the LULUCF sector in EDGAR. In order to derive comparable estimates for developing and developed countries, it is crucial to use a single methodology with global applicability. Data for developing countries are generally poor, such that only the Tier 1 methods from either the IPCC Good Practice Guide for Land Use, Land-Use Change and Forestry (GPG-LULUCF) 2003 or the IPCC 2006 Guidelines can be applied to these countries. For this purpose, we applied the IPCC Tier 1 method at global level following both IPCC GPG-LULUCF 2003 and IPCC 2006, using spatially coarse activity data (i.e. area, obtained combining two different global forest maps: the Global Land Cover map and the eco-zones subdivision of the Global Ecological Zone (GEZ) map) in combination with the IPCC default C stocks and C stock change factors. Results for the C stock changes were calculated separately for gains, harvest, fires (Global Fire Emissions Database version 3, GFEDv.3) and net deforestation for the years 1990, 2000, 2005 and 2010. At the global level, results obtained with the two sets of IPCC guidance differed by about 40 %, due to different assumptions and default factors. The IPCC Tier 1 method unavoidably introduced high uncertainties due to the "globalization" of parameters. When the results using IPCC 2006 for Annex I Parties are compared to other international datasets such as (UNFCCC, Food and Agriculture Organization of the United Nations (FAO)) or scientific publications, a significant overestimation of the sink emerges. For developing countries, we conclude that C stock change in forest remaining forest can hardly be estimated with the Tier 1 method especially for calculating the C losses, mainly because wood removal data are not separately available on harvesting or deforestation. Overall, confronting the IPCC GPG-LULUCF 2003 and IPCC 2006 methodologies, we conclude that IPCC 2006 suits best the needs of EDGAR and provide a consistent global picture of C stock changes from living forest biomass independent of country estimates.


2017 ◽  
Vol 105 (5) ◽  
pp. 1199-1209 ◽  
Author(s):  
Marion Boutin ◽  
Emmanuel Corcket ◽  
Didier Alard ◽  
Luis Villar ◽  
Juan-José Jiménez ◽  
...  

Author(s):  
В.А. Усольцев ◽  
И.С. Цепордей ◽  
А.А. Осмирко ◽  
В.Ф. Ковязин ◽  
В.П. Часовских ◽  
...  

Биомасса лесов является ключевой экосистемной составляющей и важным компонентом глобального углеродного цикла. Разработка моделей биомассы, чувствительных к изменению климата, ведется сегодня на уровнях как древостоев, так и модельных деревьев. Однако все текущие исследования подобного рода выполняются в пределах ограниченных экорегионов. Сформированная авторами база данных о биомассе насаждений подрода Pinus L., произрастающего в Евразии, в количестве 2460 пробных площадей использована в качестве основы для выявления трансконтинентальных закономерностей. Предпринята первая попытка разработать гармонизированную по структуре биомассы модель аддитивной по фракционному составу биомассы насаждений двухвойных сосен, изменяющейся по трансевразийским гидротермическим градиентам, а именно, по среднегодовым осадкам и средней январской температуре воздуха. Гармонизация обеспечена аддитивностью фракционного состава, когда суммарная биомасса стволов, ветвей, хвои и корней, полученная по «фракционным» уравнениям, равняется значению биомассы, полученной по общему уравнению. Показано, что в холодных климатических поясах увеличение осадков приводит к снижению биомассы большинства фракций, а в теплых – к ее увеличению. Соответственно во влагообеспеченных районах повышение температуры вызывает увеличение биомассы, а в засушливых – ее снижение. Геометрическая интерпретация полученной модели представлена «пропеллеро-образной» поверхностью, что согласуется с аналогичными закономерностями, ранее установленными в России на локальном и региональном уровнях. Предложенная модель аддитивной структуры биомассы сосновых древостоев дает возможность прогнозировать изменение структуры биомассы, связанное с одновременным повышением или понижением температуры января и годичных осадков. Forest biomass is a key ecosystem part and an important component of the global carbon cycle. Modelling of biomass, sensitive to climate change, is fulfiled up-to-date at levels as forest stands and sample trees. However, all current studies of this matter are carried out within limited ecoregions. The database on forest biomass of the subgenus Pinus L. in Eurasia in a number of 2460 sample plots compiled by the authors is the basis for revealing transcontinental regularities. The first attempt is made to develop a biomass structure model harmonized by means of additive component composition algorithm describing biomass change in trans-Eurasian hydrothermal gradients, namely, mean annual precipitation and mean January air temperature. Additivity of biomass component composition means that the total of biomass components (stems, branches, foliage, roots) derived from component equations is equal to the result obtained using the common biomass equation. It is stated that in cold climatic zones any increase in precipitation leads to corresponding decrease in the biomass values, but in warm zones – to its increase. In wet areas, the rise in temperature causes an increase of biomass values, but in arid areas – their reductions. Geometric view of this model represented by a «propeller-shaped» surface is consistent with the results, formerly revealed by the other authors in Russia on local and regional levels. The proposed transcontinental model of additive structure of forest biomass gives a possibility to predict the change of biomass structure in relation to simultaneous increase or decrease of January temperature and annual precipitation. The development of such models for basic forest-forming species grown in Eurasia enables to forecast any changes in the biological productivity of forest cover of Eurasia in relation to climate change.


Author(s):  
R. M. Devi ◽  
B. Sinha ◽  
J. Bisaria ◽  
S. Saran

<p><strong>Abstract.</strong> Forest ecosystems play a key role in global ecological balance and provide a variety of tangible and intangible ecosystem services that support the livelihoods of rural poor. In addition to the anthropogenic pressure on the forest resources, climate change is also impacting vegetation productivity, biomass and phenological patterns of the forest. There are many studies reported all over the world which use change in Land Use Land Cover (LULC) to assess the impact of climate change on the forest. Land use change (LC) refers to any anthropogenic or natural changes in the terrestrial ecosystem at a variety of spatial or temporal scale. Changes in LULC induced by any causes (natural/anthropogenic) play a major role in global as well as regional scale pattern which in turn affects weather and climate. Remote sensing (RS) data along with Geographic Information System (GIS) help in inventorying, mapping and monitoring of earth resources for effective and sustainable landscape management of forest areas. Accurate information about the current and past LULC including natural forest cover along with accurate means of monitoring the changes are very necessary to design future adaptation strategies and formulation of policies in tune of climate change. Therefore, this study attempts to analyze the changes of LULC of Kanha Tiger Reserve (KTR) due to climate change. The rationale for selecting KTR is to have a largely intact forest area without any interference so that any change in LULC could be attributed to the impact of climate change. The change analysis depicted changes in land use land cover (LULC) pattern by using multi-temporal satellite data over a period of time. Further, these detected changes in different LULC class influence the livelihoods of forest-dependent communities. As the study site is a Sal dominated landscape; the findings could be applied in other Sal dominated landscape of central India in making future policies, adaptation strategies and silvicultural practices for reducing the vulnerability of forest-dependent communities.</p>


1986 ◽  
Vol 15 ◽  
pp. 45-63 ◽  
Author(s):  
A. H. Knoll ◽  
S. W. F. Grant ◽  
J. W. Tsao

Vascular plants are the most conspicuous organisms on Earth, accounting for some 97 % of our planet's standing biomass. The nearly 300,000 extant vascular plant species exhibit tremendous morphological and ecological diversity. Along with the 20,000 or more species of bryophytes, algae, lichens, and cyanobacteria that also live on land, they fuel a complex terrestrial ecosystem containing animals, fungi, protozoans, and bacteria. The richness of terrestrial life has evolved during the last 10 % of Earth history; there is no evidence for non-microbial land plants or animals in rocks older than the mid-Ordovician.


Sign in / Sign up

Export Citation Format

Share Document