scholarly journals In Vitro Symbiotic Germination: A Revitalized Heuristic Approach for Orchid Species Conservation

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1742
Author(s):  
Galih Chersy Pujasatria ◽  
Chihiro Miura ◽  
Hironori Kaminaka

As one of the largest families of flowering plants, Orchidaceae is well-known for its high diversity and complex life cycles. Interestingly, such exquisite plants originate from minute seeds, going through challenges to germinate and establish in nature. Alternatively, orchid utilization as an economically important plant gradually decreases its natural population, therefore, driving the need for conservation. As with any conservation attempts, broad knowledge is required, including the species’ interaction with other organisms. All orchids establish mycorrhizal symbiosis with certain lineages of fungi to germinate naturally. Since the whole in situ study is considerably complex, in vitro symbiotic germination study is a promising alternative. It serves as a tool for extensive studies at morphophysiological and molecular levels. In addition, it provides insights before reintroduction into its natural habitat. Here we reviewed how mycorrhiza contributes to orchid lifecycles, methods to conduct in vitro study, and how it can be utilized for conservation needs.

2021 ◽  
Vol 22 (9) ◽  
pp. 4398
Author(s):  
Ana Coelho ◽  
Inês Amaro ◽  
Ana Apolónio ◽  
Anabela Paula ◽  
José Saraiva ◽  
...  

Some authors have been proposing the use of cavity disinfectants in order to reduce, or even eliminate, the effect of the microorganisms present in a dental cavity before a restoration is placed. The aim of this study was to evaluate the effect of different cavity disinfectants on bond strength and clinical success of composite and glass ionomer restorations on primary teeth. The research was conducted using Cochrane Library, PubMed/MEDLINE, SCOPUS, and Web of Science for articles published up to February 2021. The search was performed according to the PICO strategy. The evaluation of the methodological quality of each in vitro study was assessed using the CONSORT checklist for reporting in vitro studies on dental materials. Sixteen in vitro studies and one in situ study fulfilled the inclusion criteria and were analyzed. Chlorhexidine was the most studied cavity disinfectant, and its use does not compromise dentin bonding. Sodium hypochlorite is a promising alternative, but more research on its use is required to clearly state that it can safely be used as a cavity disinfectant for primary teeth. Although other disinfectants were studied, there is a low-level evidence attesting their effects on adhesion, therefore their use should be avoided.


2018 ◽  
Vol 12 (7-8) ◽  
pp. 38-45
Author(s):  
A. N. EFREMOV ◽  
N. V. PLIKINA ◽  
T. ABELI

Rare species are most vulnerable to man-made impacts, due to their biological characteristics or natural resource management. As a rule, the economic impact is associated with the destruction and damage of individual organisms, the destruction or alienation of habitats. Unfortunately, the conservation of habitat integrity is an important protection strategy, which is not always achievable in the implementation of industrial and infrastructural projects. The aim of the publication is to summarize the experience in the field of protection of rare species in the natural habitat (in situ), to evaluate and analyze the possibility of using existing methods in design and survey activities. In this regard, the main methodological approaches to the protection of rare species in the natural habitat (in situ) during the proposed economic activity were reflected. The algorithm suggested by the authors for implementing the in situ project should include a preparatory stage (initial data collection, preliminary risk assessments, technology development, obtaining permitting documentation), the main stage, the content of which is determined by the selected technology and a long monitoring stage, which makes it possible to assess the effectiveness of the taken measures. Among the main risks of in situ technology implementation, the following can be noted: the limited resources of the population that do not allow for the implementation of the procedure without prior reproduction of individuals in situ (in vitro); limited knowledge of the biology of the species; the possibility of invasion; the possibility of crossing for closely related species that сo-exist in the same habitat; social risks and consequences, target species or population may be important for the local population; financial risks during the recovery of the population. The available experience makes it possible to consider the approach to the conservation of rare species in situ as the best available technology that contributes to reducing negative environmental risks.


2007 ◽  
Vol 74 (1) ◽  
pp. 182-187 ◽  
Author(s):  
Melissa K. Jones ◽  
Elizabeth Warner ◽  
James D. Oliver

ABSTRACT The opportunistic human pathogen Vibrio vulnificus survives in a wide range of ecological environments, which demonstrates its ability to adapt to highly variable conditions. Survival and gene expression under various conditions have been extensively studied in vitro; however, little work has been done to evaluate this bacterium in its natural habitat. Therefore, this study monitored the long-term survival of V. vulnificus in situ and simultaneously evaluated the expression of stress (rpoS, relA, hfq, and groEL) and putative virulence (vvpE, smcR, viuB, and trkA) genes at estuarine sites of varying salinity. Additionally, the survival and gene expression of an rpoS and an oxyR mutant were examined under the same conditions. Differences between the sampling sites in the long-term survival of any strain were not seen. However, differences were seen in the expression of viuB, trkA, and relA but our findings differed from what has been previously shown in vitro. These results also routinely demonstrated that genes required for survival under in vitro stress or host conditions are not necessarily required for survival in the water column. Overall, this study highlights the need for further in situ evaluation of this bacterium in order to gain a true understanding of its ecology and how it relates to its natural habitat.


2011 ◽  
Vol 301 (1) ◽  
pp. R48-R59 ◽  
Author(s):  
Nicolas Pichaud ◽  
J. William O. Ballard ◽  
Robert M. Tanguay ◽  
Pierre U. Blier

In ectotherms, the external temperature is experienced by the mitochondria, and the mitochondrial respiration of different genotypes is likely to change as a result. Using high-resolution respirometry with permeabilized fibers (an in situ approach), we tried to identify differences in mitochondrial performance and thermal sensitivity of two Drosophila simulans populations with two different mitochondrial types ( siII and siIII) and geographical distributions. Maximal state 3 respiration rates obtained with electrons converging at the Q junction of the electron transport system (ETS) differed between the mitotypes at 24°C. Catalytic capacities were higher in flies harboring siII than in those harboring siIII mitochondrial DNA (2,129 vs. 1,390 pmol O2·s−1·mg protein−1). The cytochrome c oxidase activity was also higher in siII than siIII flies (3,712 vs. 2,688 pmol O2·s−1·mg protein−1). The higher catalytic capacity detected in the siII mitotype could provide an advantage in terms of intensity of aerobic activity, endurance, or both, if the intensity of exercise that can be aerobically performed is partly dictated by the aerobic capacity of the tissue. Moreover, thermal sensitivity results showed that even if temperature affects the catalytic capacity of the different enzymes of the ETS, both mitotypes revealed high tolerance to temperature variation. Previous in vitro study failed to detect any consistent functional mitochondrial differences between the same mitotypes. We conclude that the in situ approach is more sensitive and that the ETS is a robust system in terms of functional and regulatory properties across a wide range of temperatures.


1997 ◽  
Vol 10 (4) ◽  
pp. 499-505 ◽  
Author(s):  
Maria T. Brandl ◽  
Steven E. Lindow

The ipdC gene of Erwinia herbicola strain 299R encodes an indolepyruvate decarboxylase involved in the biosynthesis of indole-3-acetic acid (IAA). Transcriptional fusions of ipdC to an ice nucleation reporter gene (inaZ) were used to study the expression of ipdC in vitro and in situ on plants. ipdC was expressed only at low levels in liquid media and independently of factors such as richness of the medium, pH, nitrogen availability, the presence of l-tryptophan or oxygen, and growth phase of the culture. However, the transcriptional activity of ipdC increased approximately 18-fold under low solute and matric potentials in culture. ipdC was also induced 32-fold on leaves of bean and tobacco and 1,000-fold on pear flowers. This is the first report of the plant-inducible transcription of a bacterial IAA biosynthetic gene. It strongly supports the role of ipdC, and thus that of the indole-3-pyruvic acid pathway, in IAA biosynthesis by strain 299R in situ. The plant induction and apparent regulation of ipdC by low water availability indicate that this gene, and presumably IAA synthesis, are involved in a response to conditions encountered by E. herbicola in its natural habitat on leaves.


2006 ◽  
Vol 54 (4) ◽  
pp. 375 ◽  
Author(s):  
A. L. Batty ◽  
M. C. Brundrett ◽  
K. W. Dixon ◽  
K. Sivasithamparam

The establishment of five species of temperate terrestrial orchids (Caladenia arenicola Hopper & A.P.Brown, Diuris magnifica D.L.Jones, D. micrantha D.L.Jones, Pterostylis sanginea D.LJones & M.A.Clem. and Thelymitra manginiorum ms) in natural habitat through in situ seed sowing, or by planting of seedlings and dormant tubers, was evaluated. Seed of the Western Australian temperate terrestrial taxa, Caladenia arenicola and Pterostylis sanguinea germinated best when sown into soil inoculated with mycorrhizal fungi at field sites but failed to develop the tubers necessary for surviving summer dormancy. However, seedling survival improved when actively growing symbiotic seedlings were transferred to natural habitat during the growing season. Caladenia arenicola and P. sanguinea seedlings survived the initial transfer to field sites but only P. sanguinea survived into the second growing season. Highest survival was obtained by translocating dormant tubers of C. arenicola and Diuris magnifica, with D. magnifica persisting at the site 5 years after translocation. However, outplanted C. arenicola survived for only 2 years. In another trial, where seedlings and dormant tubers of a rare orchid Thelymitra manginiorum were translocated into eucalypt woodland, 18% persisted after 5 years. The rare orchid D. micrantha exhibited the highest survival rates, with greater than 80% of tubers surviving 5 years after transfer of mature dormant tubers to field sites. This study highlights the benefit of using optimised methods for seedling production by symbiotic germination and nursery growth to produce advanced seedlings or dormant tubers to maximise the survival of translocated plants. It also demonstrates the need to consider different strategies when dealing with individual species.


2011 ◽  
Vol 29 (6) ◽  
pp. 925-930 ◽  
Author(s):  
Michael Lavagnino ◽  
Steven P. Arnoczky ◽  
Keri Gardner

Sign in / Sign up

Export Citation Format

Share Document