scholarly journals The Role of Magnetic Islands in Collisionless Driven Reconnection: A Kinetic Approach to Multi-Scale Phenomena

Plasma ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 68-77 ◽  
Author(s):  
Ritoku Horiuchi

The role of magnetic islands in collisionless driven reconnection has been investigated from the standpoint of a kinetic approach to multi-scale phenomena by means of two-dimensional particle-in-cell (PIC) simulation. There are two different types of the solutions in the evolution of the reconnection system. One is a steady solution in which the system relaxes into a steady state, and no island is generated (the no-island case). The other is an intermittent solution in which the system does not reach a steady state, and magnetic islands are frequently generated in the current sheet (the multi-island case). It is found that the electromagnetic energy is more effectively transferred to the particle energy in the multi-island case compared with the no-island case. The transferred energy is stored inside the magnetic island in the form of the thermal energy through compressional heating, and is carried away together with the magnetic island from the reconnection region. These results suggest that the formation of a magnetic island chain may have a potential to bridge the energy gap between macroscopic and microscopic physics by widening the dissipation region and strengthening the energy dissipation rate.

2021 ◽  
Author(s):  
Valentina Zharkova ◽  
Qian Xia

<div> <div> <div> <p>We will overview particle motion in 3D Harris-type RCSs without and with magnetic islands using particle-in-cell (PIC) method considering the plasma feedback to electromagnetic fields. We evaluate particle energy gains and pitch angle distributions (PADs) of accelerated particles of both changes in different locations inside current sheets as seen under the different directions by a virtual spacecraft passing through. The RCS parameters are considered comparable to heliosphere and solar wind conditions. </p> <p>The energy gains and the PADs of particles are shown to change depending on a topology of magnetic fields.  We report separation of electrons from ions at acceleeration in current sheets with strong guiding fields  and formation of transit and bounced beams from the particles of the same charge. The  transit particles are shown to form  bi-directional energetic electron beams (strahls), while bounced particles are mainly account from driopout fluxes in the heliosphere. In topologies with weak guding field strahls are mainly present inside the magneticislands and located closely above/below the X-nullpoints in the inflow regions. As the guiding field becomes larger, the regions with bi-directional strahls are compressed towards small areas in the exhausts of current sheets. Mono-directional strahls with PADS along 0 or 180 degrees are found quasi-parallel to the magnetic field lines near the X-nullpoint due to the dominant Fermi-type magnetic curvature drift acceleration. Meanwhile, high-energy electrons confined inside magnetic islands create PADs about 90◦. </p> </div> </div> </div>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Minjun J. Choi ◽  
Lāszlo Bardōczi ◽  
Jae-Min Kwon ◽  
T. S. Hahm ◽  
Hyeon K. Park ◽  
...  

AbstractMagnetic islands (MIs), resulting from a magnetic field reconnection, are ubiquitous structures in magnetized plasmas. In tokamak plasmas, recent researches suggested that the interaction between an MI and ambient turbulence can be important for the nonlinear MI evolution, but a lack of detailed experimental observations and analyses has prevented further understanding. Here, we provide comprehensive observations such as turbulence spreading into an MI and turbulence enhancement at the reconnection site, elucidating intricate effects of plasma turbulence on the nonlinear MI evolution.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 901
Author(s):  
Davide Bertini ◽  
Lorenzo Mazzei ◽  
Antonio Andreini

Computational Fluid Dynamics is a fundamental tool to simulate the flow field and the multi-physics nature of the phenomena involved in gas turbine combustors, supporting their design since the very preliminary phases. Standard steady state RANS turbulence models provide a reasonable prediction, despite some well-known limitations in reproducing the turbulent mixing in highly unsteady flows. Their affordable cost is ideal in the preliminary design steps, whereas, in the detailed phase of the design process, turbulence scale-resolving methods (such as LES or similar approaches) can be preferred to significantly improve the accuracy. Despite that, in dealing with multi-physics and multi-scale problems, as for Conjugate Heat Transfer (CHT) in presence of radiation, transient approaches are not always affordable and appropriate numerical treatments are necessary to properly account for the huge range of characteristics scales in space and time that occur when turbulence is resolved and heat conduction is simulated contextually. The present work describes an innovative methodology to perform CHT simulations accounting for multi-physics and multi-scale problems. Such methodology, named U-THERM3D, is applied for the metal temperature prediction of an annular aeroengine lean burn combustor. The theoretical formulations of the tool are described, together with its numerical implementation in the commercial CFD code ANSYS Fluent. The proposed approach is based on a time de-synchronization of the involved time dependent physics permitting to significantly speed up the calculation with respect to fully coupled strategy, preserving at the same time the effect of unsteady heat transfer on the final time averaged predicted metal temperature. The results of some preliminary assessment tests of its consistency and accuracy are reported before showing its exploitation on the real combustor. The results are compared against steady-state calculations and experimental data obtained by full annular tests at real scale conditions. The work confirms the importance of high-fidelity CFD approaches for the aerothermal prediction of liner metal temperature.


2021 ◽  
Vol 129 (12) ◽  
pp. 125102
Author(s):  
A. S. Saleh ◽  
H. Ceric ◽  
H. Zahednamesh
Keyword(s):  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Song ◽  
Lijuan Cao ◽  
Rui Liu ◽  
Hui Ma ◽  
Yanan Li ◽  
...  

AbstractGlucocorticoids (GC) are widely used clinically, despite the presence of significant side effects, including glucocorticoid-induced osteoporosis (GIOP). While GC are believed to act directly on osteoblasts and osteoclasts to promote osteoporosis, the detailed underlying molecular mechanism of GC-induced osteoporosis is still not fully elucidated. Here, we show that lymphocytes play a pivotal role in regulating GC-induced osteoporosis. We show that GIOP could not be induced in SCID mice that lack T cells, but it could be re-established by adoptive transfer of splenic T cells from wild-type mice. As expected, T cells in the periphery are greatly reduced by GC; instead, they accumulate in the bone marrow where they are protected from GC-induced apoptosis. These bone marrow T cells in GC-treated mice express high steady-state levels of NF-κB receptor activator ligand (RANKL), which promotes the formation and maturation of osteoclasts and induces osteoporosis. Taken together, these findings reveal a critical role for T cells in GIOP.


2016 ◽  
Vol 2016 (5) ◽  
pp. 054044 ◽  
Author(s):  
D Valenti ◽  
G Denaro ◽  
F Conversano ◽  
C Brunet ◽  
A Bonanno ◽  
...  
Keyword(s):  

1984 ◽  
Vol 4 (1) ◽  
pp. 107-109 ◽  
Author(s):  
E. Shohami ◽  
A. Sidi

The effect of haemorrhagic hypotension on the levels of prostaglandin E2 (PGE2), thromboxane B2 (TXB2), and 6-keto prostaglandin F1α (6-keto-PGF1α) in cortical tissue of rats was studied. Lightly anesthetized rats were subjected to steady-state hypotension for 15 min, with a mean arterial blood pressure of 80, 60, and 40 mm Hg, and compared to a control group of normotensive rats. No significant change was found in the levels of PGE2 and TXB2. The level of 6-keto-PGF1α increased from 7.8 ± 0.9 to 14.1 ± 1.9 pg/mg protein (p < 0.02) at 80 mm Hg. Our findings suggest that prostacyclin, which is a potent vasodilator, might play a role in setting the lower limit of the autoregulation range.


2018 ◽  
Vol 85 ◽  
pp. 299-310 ◽  
Author(s):  
An Thi-Binh Nguyen ◽  
Michaël Nigen ◽  
Luciana Jimenez ◽  
Hassina Ait-Abderahim ◽  
Charles Cunault ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document