scholarly journals Electrically Conductive Polyetheretherketone Nanocomposite Filaments: From Production to Fused Deposition Modeling

Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 925 ◽  
Author(s):  
Jordana Gonçalves ◽  
Patrícia Lima ◽  
Beate Krause ◽  
Petra Pötschke ◽  
Ugo Lafont ◽  
...  

The present work reports the production and characterization of polyetheretherketone (PEEK) nanocomposite filaments incorporating carbon nanotubes (CNT) and graphite nanoplates (GnP), electrically conductive and suitable for fused deposition modeling (FDM) processing. The nanocomposites were manufactured by melt mixing and those presenting electrical conductivity near 10 S/m were selected for the production of filaments for FDM. The extruded filaments were characterized for mechanical and thermal conductivity, polymer crystallinity, thermal relaxation, nanoparticle dispersion, thermoelectric effect, and coefficient of friction. They presented electrical conductivity in the range of 1.5 to 13.1 S/m, as well as good mechanical performance and higher thermal conductivity compared to PEEK. The addition of GnP improved the composites’ melt processability, maintained the electrical conductivity at target level, and reduced the coefficient of friction by up to 60%. Finally, three-dimensional (3D) printed test specimens were produced, showing a Young’s modulus and ultimate tensile strength comparable to those of the filaments, but a lower strain at break and electrical conductivity. This was attributed to the presence of large voids in the part, revealing the need for 3D printing parameter optimization. Finally, filament production was up-scaled to kilogram scale maintaining the properties of the research-scale filaments.

2019 ◽  
Vol 25 (3) ◽  
pp. 462-472 ◽  
Author(s):  
Oluwakayode Bamiduro ◽  
Gbadebo Owolabi ◽  
Mulugeta A. Haile ◽  
Jaret C. Riddick

Purpose The continual growth of additive manufacturing has increased tremendously because of its versatility, flexibility and high customization of geometric structures. However, design hurdles are presented in understanding the relationship between the fabrication process and materials microstructure as it relates to the mechanical performance. The purpose of this paper is to investigate the role of build architecture and microstructure and the effects of load direction on the static response and mechanical properties of acrylonitrile butadiene styrene (ABS) specimens obtained via the fused deposition modeling (FDM) processing technique. Design/methodology/approach Among additive manufacturing processes, FDM is a prolific technology for manufacturing ABS. The blend of ABS combines strength, rigidity and toughness, all of which are desirable for the production of structural materials in rapid manufacturing applications. However, reported literature has varied widely on the mechanical performance due to the proprietary nature of the ABS material ratio, ultimately creating a design hurdle. While prior experimental studies have studied the mechanical response via uniaxial tension testing, this study has aimed to understand the mechanical response of ABS from the materials’ microstructural point of view. First, ABS specimen was fabricated via FDM using a defined build architecture. Next, the specimens were mechanically tested until failure. Then finally, the failure structures were microstructurally investigated. In this paper, the effects of microstructural evolution on the static mechanical response of various build architecture of ABS aimed at FDM manufacturing technique was analyzed. Findings The results show that the rastering orientation of 0/90 exhibited the highest tensile strength followed by fracture at its maximum load. However, the “45” bead direction of the ABS fibers displayed a cold-drawing behavior before rupture. The morphology analyses before and after tensile failure were characterized by a scanning electron microscopy (SEM) which highlighted the effects of bead geometry (layers) and areas of stress concentration such as interstitial voids in the material during build, ultimately compromising the structural integrity of the specimens. Research limitations/implications The ability to control the constituents and microstructure of a material during fabrication is significant to improving and predicting the mechanical performance of structural additive manufacturing components. In this report, the effects of microstructure on the mechanical performance of FDM-fabricated ABS materials was discussed. Further investigations are planned in understanding the effects of ambient environmental conditions (such as moisture) on the ABS material pre- and post-fabrication. Originality/value The study provides valuable experimental data for the purpose of understanding the inter-dependency between build parameters and microstructure as it relates to the specimens exemplified strength. The results highlighted in this study are fundamental to the development of optimal design of strength and complex ultra-lightweight structure efficiency.


2017 ◽  
Vol 84 (9) ◽  
Author(s):  
Benedikt Hampel ◽  
Samuel Monshausen ◽  
Meinhard Schilling

AbstractIn consequence of the growing diversity of materials in the fused deposition modeling 3D printing technique, electrically conductive materials are commercially available. In this work two filaments based on thermoplastics filled with carbon or metal nanoparticles are analyzed in terms of their electrical conductance. The printing parameters to process the materials with the 3D printer are optimized with the design of experiments (DoE) method. A model to calculate the resistance of such 3D printed structures is presented and a demonstrator as a proof of concept was 3D printed based on these results. In addition, 3D printing of capacitors is investigated.


Author(s):  
Tyler J. Sonsalla ◽  
Leland Weiss ◽  
Arden Moore ◽  
Adarsh Radadia ◽  
Debbie Wood ◽  
...  

Waste heat is a major energy loss in manufacturing facilities. Thermally conductive polymer composite heat exchangers could be utilized in the ultralow temperature range (below 200° C) for waste heat recovery. Fused deposition modeling (FDM), also known as three-dimensional (3-D) printing, has become an increasingly popular technology and presents one approach to fabrication of these exchangers. The primary challenge to the use of FDM is the low-conductivity of the materials themselves. This paper presents a study of a new polymer-Zn composite designed for enhanced thermal conductivity for usage in FDM systems. Thermal properties were assessed in addition to basic printability. Filler volume percentages were varied to study the effects on material properties. Scanning electron microscope (SEM) images were taken of the 3-D printed test pieces to determine filler orientation and filler distribution. Lastly, experimentally obtained thermal conductivity values were compared to the theoretical thermal conductivity values predicted from the Lewis-Nielsen model.


Author(s):  
Surendra Singh Dewada ◽  
Amit Telang

Abstract Additive Manufacturing (AM) is a rapidly evolving technology due to its numerous advantages over traditional manufacturing processes. AM processable materials are limited and have poor mechanical performance, restraining the technology's potential for functional part manufacturing. Although FDM is the most popular and growing technique, the inferiority of the material limits its application to prototyping. Nanocomposite material improves the thermal, mechanical, and electrical performance of FDM objects. Mostly polymer nanocomposites are feasible to process and several researchers have reported enhanced performance with polymer nanocomposites. Carbon nanotubes, graphene nanoplatelets, nano clay, and carbon fiber are primary reinforcements to thermoplastics. The current state of the art relevant to advances in nanocomposites for the FDM process, as well as the influence of nanofillers on mechanical properties of the build object are reviewed in this paper.


2017 ◽  
Vol 23 (6) ◽  
pp. 973-982 ◽  
Author(s):  
Hao Li ◽  
Shuai Zhang ◽  
Zhiran Yi ◽  
Jie Li ◽  
Aihua Sun ◽  
...  

Purpose This work aims to evaluate the influence of rheological properties of building materials on the bonding quality and ultimate tensile strength in the fused deposition modeling (FDM) process, through the investigation of parts printed by semi-crystalline and amorphous resins. Little information is currently available about the influence of the crystalline nature on FDM-printed part quality. Design/methodology/approach Semi-crystalline polyamide 12 and amorphous acrylonitrile butadiene styrene (ABS) were used to assess the influence of rheological properties on bonding quality and the tensile strength, by varying three important process parameters: materials, liquefier temperature and raster orientation. A fractography of both tensile and freeze-fractured samples was also investigated. Findings The rheological properties, mainly the melt viscosity, were found to have a significant influence on the bonding quality of fused filaments. Better bonding quality and higher tensile strength of FDM parts printed with semi-crystalline PA12, as compared with amorphous ABS, are suggested to be a result of higher initial sintering rates owing to the lower melt viscosity of PA12 at low shear rates. Near-full dense PA12 parts were obtained by FDM. Originality/value This project provides a variety of data and insight regarding the effect of materials properties on the mechanical performance of FDM-printed parts. The results showed that FDM technique allows the production of PA12 parts with adequate mechanical performance, overcoming the greatest limitation of a dependence on amorphous thermoplastics as a feedstock for the production of prototypes.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 77
Author(s):  
Sasa Gao ◽  
Ruijuan Liu ◽  
Hua Xin ◽  
Haitao Liang ◽  
Yunfei Wang ◽  
...  

Additive manufacturing provides a novel and robust way to prepare medical product with anatomic matched geometry and tailored mechanical performance. In this study, the surface characteristics, microstructure, and mechanical properties of fused deposition modeling (FDM) prepared polyether-ether-ketone (PEEK) were systematically studied. During the FDM process, the crystal unit cell and thermal attribute of PEEK material remained unchanged, whereas the surface layer generally became more hydrophilic with an obvious reduction in surface hardness. Raster angle has a significant effect on the mechanical strength but not on the failure mechanism. In practice, FDM fabricated PEEK acted more like a laminate rather than a unified structure. Its main failure mechanism was correlated to the internal voids. The results show that horizontal infill orientation with 30° raster angle is promising for a better comprehensive mechanical performance, and the corresponding tensile, flexural, and shear strengths are (76.5 ± 1.4) MPa, (149.7 ± 3.0) MPa, and (55.5 ± 1.8) MPa, respectively. The findings of this study provide guidelines for FDM-PEEK to enable its realization in applications such as orthopedic implants.


Sign in / Sign up

Export Citation Format

Share Document