scholarly journals Valorization of Industrial Lignin as Biobased Carbon Source in Fire Retardant System for Polyamide 11 Blends

Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 180 ◽  
Author(s):  
Neeraj Mandlekar ◽  
Aurélie Cayla ◽  
François Rault ◽  
Stéphane Giraud ◽  
Fabien Salaün ◽  
...  

In this study, two different types of industrial lignin (i.e., lignosulphonate lignin (LL) and kraft lignin (DL)) were exploited as charring agents with phosphorus-based flame retardants for polyamide 11 (PA11). The effect of lignins on the thermal stability and fire behavior of PA11 combined with phosphinate additives (namely, aluminum phosphinate (AlP) and zinc phosphinate (ZnP)) has been studied by thermogravimetric analysis (TGA), UL 94 vertical flame spread, and cone calorimetry tests. Various blends of flame retarded PA11 were prepared by melt process using a twin-screw extruder. Thermogravimetric analyses showed that the LL containing ternary blends are able to provide higher thermal stability, as well as a developed char residue. The decomposition of the phosphinates led to the formation of phosphate compounds in the condensed phase, which promotes the formation of a stable char. Flammability tests showed that LL/ZnP ternary blends were able to achieve self-extinction and V-1 classification; the other formulations showed a strong melt dripping and higher burning. In addition to this, cone calorimetry results showed that the most enhanced behavior was found when 10 wt % of LL and AlP were combined, which strongly reduced PHRR (−74%) and THR (−22%), due to the interaction between LL and AlP, which not only promotes char formation but also confers the stability to char in the condensed phase.

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 778 ◽  
Author(s):  
Jacob Sag ◽  
Philipp Kukla ◽  
Daniela Goedderz ◽  
Hendrik Roch ◽  
Stephan Kabasci ◽  
...  

Novel polymeric acrylate-based flame retardants (FR 1–4) containing two phosphorus groups in different chemical environments were synthesized in three steps and characterized via nuclear magnetic resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and mass spectrometry (MS). Polylactic acid (PLA) formulations with the synthesized compounds were investigated to evaluate the efficiency of these flame retardants and their mode of action by using TGA, UL94, and cone calorimetry. In order to compare the results a flame retardant polyester containing only one phosphorus group (ItaP) was also investigated in PLA regarding its flame inhibiting effect. Since the fire behavior depends not only on the mode of action of the flame retardants but also strongly on physical phenomena like melt dripping, the flame retardants were also incorporated into PLA with higher viscosity. In the UL94 vertical burning test setup, 10% of the novel flame retardants (FR 1–4) is sufficient to reach a V-0 rating in both PLA types, while a loading of 15% of ItaP is not enough to reach the same classification. Despite their different structure, TGA and cone calorimetry results confirmed a gas phase mechanism mainly responsible for the highly efficient flame retardancy for all compounds. Finally, cone calorimetry tests of the flame retardant PLA with two heat fluxes showed different flame inhibiting efficiencies for different fire scenarios.


2014 ◽  
Vol 1033-1034 ◽  
pp. 900-906
Author(s):  
Ze Jiang Zhang ◽  
Li Jun Li ◽  
Feng Li ◽  
Jin He ◽  
Zi Qiong Gan

Infrared spectra of the pyrolysis gases of polyurethane foam flame retarded by MPOP, MP, MC, magnesium hydroxide, or antimony trioxide flame retardants was analyzed online by FTIR method. At 600°C, the polyurethane foam flame retarded by MPOP, MP, MC, magnesium hydroxide or antimony trioxide flame retardants released more hydrogen cyanide than the pure polyurethane foam, proved that the MPOP, MP, MC and magnesium hydroxide flame retardants could change the law that the polyurethane released hydrogen cyanide. At 600 °C, the peak of C=O stretching vibration at 1730cm-1did not appear for the flame-retardant polyurethane, indicating that the flame retardants can make the polyurethane rapidly carbonize and the fewer C=O intermediate was produced. The absorbent peaks of the fire-retardant samples at 1604cm-1, 1538 cm-1, 1250 to 1230 cm-1and 1450cm-1implied that the flame retardants could delay the oxidative decomposition of the polyurethane component at 600 °C, so that more components may be carbonized. When increasing the pyrolysis temperature, the perlite would make polyurethane foam release fewer hydrogen cyanide.


2011 ◽  
Vol 29 (6) ◽  
pp. 479-498 ◽  
Author(s):  
S. C. Lao ◽  
J. H. Koo ◽  
T. J. Moon ◽  
M. Londa ◽  
C. C. Ibeh ◽  
...  

Polyamide (nylon) 11 (PA11) were melt-blended by dispersing low concentrations of nanoparticles (NPs), namely nanoclays (NCs) and carbon nanofibers (CNFs) via twin-screw extrusion. To enhance their thermal and flame retardant (FR) properties, an intumescent FR additive was added to the mechanically superior NC and CNF PA11 formulations. For neat and NP-reinforced PA11 as well as for PA11 reinforced by both intumescent FR and select NPs (NC or CNF), decomposition temperatures by TGA, flammability properties by UL 94, and cone calorimetry values were measured. All PA11 polymer systems infused with both NPs and FR additive had higher decomposition temperatures than those infused with solely FR additive. For the PA11/FR/NC polymer blends, Exolit® OP 1312 (FR2) is the preferred FR additive to pass the UL 94 V-0 requirement with 20 wt%. For the PA11/FR/CNF formulations, all Exolit® OP 1311 (FR1), OP 1312 (FR2), and OP 1230 (FR3) FR additives passed the UL 94 V-0 requirement with 20 wt%.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 1311-1324
Author(s):  
Yating Hua ◽  
Chungui Du ◽  
Huilong Yu ◽  
Ailian Hu ◽  
Rui Peng ◽  
...  

Flame-retardant silicate-intercalated calcium aluminum hydrotalcites (CaAl-SiO3-LDHs) were synthesized to treat bamboo for retardancy, to overcome the bamboo’s flammability and reduce the production of toxic smoke during combustion. The microstructure, elemental composition, flame retardancy, and smoke suppression characteristics of the bamboo before and after the fire-retardant treatment with different pressure impregnation were studied using a scanning electron microscope (SEM), elemental analysis (EDX), and cone calorimetry. It was found that CaAl-SiO3-LDHs flame retardants can effectively fill and cover the cell wall surface and the cell cavity of bamboo without damaging the microstructure. As compared to the non-flame-retardant bamboo, the heat release rate (HRR) of the CaAl-SiO3-LDHs flame-retardant bamboo was significantly reduced, the total heat release (THR) decreased by 31.3%, the residue mass increased by 51.4%, the time to ignition (TTI) delay rate reached 77.8%, the mass loss rate (MLR) decreased, and the carbon formation improved. Additionally, as compared to the non-flame-retardant bamboo, the total smoke release (TSR) of the CaAl-SiO3-LDHs flame-retardant bamboo decreased by 38.9%, and the carbon monoxide yield (YCO) approached zero. Thus, the CaAl-SiO3-LDHs flame-retardant bamboo has excellent flame-retardancy and smoke suppression characteristics.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2217 ◽  
Author(s):  
Tianxiang Liang ◽  
Jianan Cai ◽  
Shumei Liu ◽  
Hualin Lai ◽  
Jianqing Zhao

A way to suppress the deterioration in mechanical properties of polyamide 6 (PA6) is required, especially with high loading of flame retardants in the matrix. In this study, a novel aromatic Schiff base diepoxide (DES) was synthesized. It exhibited an efficient chain extension effect on PA6 and a synergistic flame-retardant effect with aluminum diethylphosphinate (AlPi) for PA6. The PA6 composite with 16 wt.% AlPi only passed UL-94 V-0 rating at 1.6 mm thickness, while the combination of 1.5 wt.% DES with 13 wt.% AlPi induced PA6 to achieve a UL-94 V-0 rating at 0.8 mm thickness. The tensile, flexural, and Izod notched impact strengths were increased by 16.2%, 16.5%, and 24.9%, respectively, compared with those of V-0 flame-retarded PA6 composites with 16 wt.% AlPi. The flame-retarded mechanism of PA6/AlPi/DES was investigated by cone calorimetry and infrared characterization of the char residues and pyrolysis products. These results showed that DES had a synergistic effect with AlPi in condensed-phase flame retardation by promoting the production of aluminum phosphorus oxides and polyphosphates in the char residues.


2011 ◽  
Vol 471-472 ◽  
pp. 640-645 ◽  
Author(s):  
Mohd Rashid Yusof Hamid ◽  
Ahmad Haji Sahrim

Recently, research on natural fiber reinforced polymer composites has gained importance due to the abundant sources of fibers that can be obtained at very low cost. In this study, wood plastic composite (WPC) materials is made by mixing (compounding) high density polyethylene (HDPE) and (ligno) cellulose fiber, i.e. rice husk reinforced with sawdust have been manufactured using a high volume process using counter rotating twin screw extruder. Different fire retardant agents have been employed in order to improve fire behavior in this study. The flammability and thermal stability of WPC-HDPE based in different compositions have been carried out by fire test method according to ASTM D635-06 and evaluated by thermo gravimetric analysis respectively. The properties of flexural strength and impact strength were also included.


e-Polymers ◽  
2017 ◽  
Vol 17 (4) ◽  
pp. 341-348 ◽  
Author(s):  
Elif Kaynak ◽  
Mustafa Erdem Ureyen ◽  
Ali Savaş Koparal

AbstractThe effects of sepiolite on fire behavior of ammonium polyphosphate-based intumescent flame retardant (IFR)/polypropylene (PP) were investigated. The disaggregation of sepiolite bundles has been provided by wet-milling as the zeta potential value decreased from −9.6 to −31.3 mV. PP and additives were compounded by a twin-screw extruder and molded by injection. A total additive content of 20 wt% in PP and various proportions of sepiolite (1.0–10.0 wt%) in flame retardant (FR) formulation were studied. The flammability of the samples was measured by limit oxygen index (LOI) test and cone calorimetry. The LOI of neat PP (19%) was increased to 32.2% when sepiolite and IFR were used. The peak heat release rate of neat PP (1566.4 kW/m2) was also significantly reduced (94.7 kW/m2) when sepiolite was added with IFR. Thermal analyses results showed that, at higher temperature (700°C), IFR and sepiolite increased the char residue (9 wt%) compared to neat PP (0 wt%).


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2450 ◽  
Author(s):  
Valentin Carretier ◽  
Julien Delcroix ◽  
Monica Francesca Pucci ◽  
Pierre Rublon ◽  
José-Marie Lopez-Cuesta

A comparison of the influence of sepiolite and lignin as potential synergists for fire retardant (FR) systems based on ammonium polyphosphate (APP) has been carried out in polyurethane elastomer and polylactide. Different ratios of kraft lignin and sepiolite were tested in combination with APP in both polymers. The thermal stability and the fire behavior of the corresponding composites were evaluated using Thermogravimetric Analysis (TGA), a Pyrolysis Combustion Flow Calorimeter (PCFC) and Cone Calorimeter (CC). The mechanisms of flame retardancy imparted by APP and other components were investigated. Synergistic effects were highlighted but only for specific ratios between APP and sepiolite in polyurethane elastomer (PUE) and polylactide (PLA) on one hand, and between APP and lignin in PLA on the other hand. Sepiolite acts as char reinforcement but through the formation of new phosphorus compounds it is also able to form a protective layer. Conversely, only complementary effects on fire performance were noted for lignin in PUE due to a dramatic influence on thermal stability despite its action on char formation.


2017 ◽  
Vol 8 (40) ◽  
pp. 6309-6318 ◽  
Author(s):  
Dan Xiao ◽  
Zhi Li ◽  
Uwe Gohs ◽  
Udo Wagenknecht ◽  
Brigitte Voit ◽  
...  

In this study, an efficient novel allylamine polyphosphate (AAPP) as a flame retardant (FR) crosslinker is used to improve the thermal stability of flame retarded polypropylene (PP) composites under electron beam treatment.


Sign in / Sign up

Export Citation Format

Share Document