scholarly journals Influence of Epoxidized Canola Oil (eCO) and Cellulose Nanocrystals (CNCs) on the Mechanical and Thermal Properties of Polyhydroxybutyrate (PHB)—Poly(lactic acid) (PLA) Blends

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 933 ◽  
Author(s):  
Adrián Lopera-Valle ◽  
Joseph V. Caputo ◽  
Rosineide Leão ◽  
Dominic Sauvageau ◽  
Sandra Maria Luz ◽  
...  

Two major obstacles to utilizing polyhydroxybutyrate (PHB)—a biodegradable and biocompatible polymer—in commercial applications are its low tensile yield strength (<10 MPa) and elongation at break (~5%). In this work, we investigated the modification of the mechanical properties of PHB through the use of a variety of bio-derived additives. Poly(lactic acid) (PLA) and sugarcane-sourced cellulose nanocrystals (CNCs) were proposed as mechanical reinforcing elements, and epoxidized canola oil (eCO) was utilized as a green plasticizer. Zinc acetate was added to PHB and PLA blends in order to improve blending. Composites were mixed in a micro-extruder, and the resulting filaments were molded into 2-mm sheets utilizing a hot-press prior to characterization. The inclusion of the various additives was found to influence the crystallization process of PHB without affecting thermal stability. In general, the addition of PLA and, to a lesser degree, CNCs, resulted in an increase in the Young’s modulus of the material, while the addition of eCO improved the strain at break. Overall, samples containing eCO and PLA (at concentrations of 10 wt %, and 25 wt %, respectively) demonstrated the best mechanical properties in terms of Young’s modulus, tensile strength and strain at break.

2018 ◽  
Vol 25 (2) ◽  
pp. 395-401 ◽  
Author(s):  
Supachok Tanpichai ◽  
Jatuphorn Wootthikanokkhan

AbstractThe reinforcing abilities of cellulose microfibers and nanofibrillated cellulose (NFC) in poly(lactic acid) (PLA) were evaluated. NFC successfully prepared from regenerated cellulose fibers using high-speed blending for 60 min was introduced in a PLA matrix. The physical and mechanical properties of NFC-reinforced PLA composites were investigated in comparison with those of the composites with microfibers. NFC fibrils with diameters in the range of 100–500 nm were disintegrated from micron-sized regenerated fibers. A slight decrease in the degree of crystallinity and degradation temperature obtained for NFC after mechanical treatment was found compared with untreated microfibers. The introduction of NFC in the PLA effectively increased the tensile strength and Young’s modulus of the composites by 18% and 42%, respectively. The use of micron-sized fibers to reinforce PLA, on the other hand, showed a slight improvement in Young’s modulus (13%). The improvement in the mechanical properties of the composites reinforced with NFC was found because of the higher surface area of NFC and better interaction between the matrix and NFC fibrils. This allowed stress to transfer from the matrix to the reinforcement. NFC prepared using the high-speed blending could be an alternative to use as reinforcement in composites.


2019 ◽  
Vol 953 ◽  
pp. 47-52
Author(s):  
Sirirat Wacharawichanant ◽  
Attachai Sriwattana ◽  
Kulaya Yaisoon ◽  
Manop Phankokkruad

The effects of the montmorillonite clay surface modified with 0.5-5 wt% aminopropyltriethoxysilane and 15-35% octadecylamine (Clay-APTSO) on morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/ethylene-octene copolymer (EOC)/Clay-APTSO composites were investigated. The blends of PLA/EOC with and without Clay-APTSO were prepared by melt mixing in an internal mixer. Scanning electron microscopy analysis observed the morphology of PLA/EOC blends demonstrated a phase separation of minor phase and matrix phase. The addition of Clay-APTSO in PLA/EOC blends showed significant decreased in droplet size of dispersed EOC phase, thus, Clay-APTSO acted as an effective compatibilizer in the PLA/EOC blends. The results of tensile properties found the decrease of Young’s modulus of PLA when added EOC due to the low modulus and flexibility of EOC. While the incorporation of Clay-APTSO increased significantly Young’s modulus of PLA/EOC blends at low EOC and Clay-APTSO content. The strain at break of the blends increased with the increase of EOC loading, this indicated the presence of EOC enhanced the elongation at break of PLA, while the addition Clay-APTSO reduced the strain at break of PLA/EOC blends. The tensile strength of all blend compositions improved when added Clay-APTSO and the tensile strength showed the highest value at 3 phr of Clay-APTSO. The thermal stability of PLA/EOC blends did not change when compared with neat PLA, and when added Clay-APTSO in the blends could improve the thermal stability of the PLA/EOC blends.


2015 ◽  
Vol 1125 ◽  
pp. 222-226 ◽  
Author(s):  
Mohd Shaiful Zaidi Mat Desa ◽  
Azman Hassan ◽  
Agus Arsad ◽  
Nor Nisa Balqis Mohammad

The effect of rubber toughening on mechanical and thermal properties of poly (lactic acid) (PLA) was investigated by using three types of rubbers; natural rubber (NR), epoxidized natural rubber (ENR) and core-shell rubber (CSR). The PLA/rubber blends were prepared by melt blending in a counter-rotating twin-screw extruder, where the rubber content for all blends was kept at 5 wt%. It was found that the addition of the rubbers increased the impact strength for all blends as compared to pure PLA. On the other hand, all PLA/rubber blends showed notable decrease of Young’s modulus especially for PLA/NR blend which decreased by 72% than pure PLA. Similarly, significant decrease of tensile strength was also observed for all PLA/rubber blends. PLA/ENR blend showed a morebalance mechanical properties with fairly significant improvement of impact strength and moderate decrease of tensile strength, Young’s modulus and elongation at break. In general, PLA/NR blend showed the highest overall impact strength, while the PLA/CSR showed the highest tensile strength and Young’s modulus among the blends. Thermal analysis revealed that the Tg of PLA decreased with incorporation of the three types of rubbers with NR showing the largest decrease. This study indicates that NR, ENR and CSR are effective in enhancing toughness of PLA


2018 ◽  
Vol 33 (3) ◽  
pp. 289-304 ◽  
Author(s):  
Kuhananthan Nanthakumar ◽  
Chan Ming Yeng ◽  
Koay Seong Chun

This research covers the preparation of poly(lactic acid) (PLA)/sugarcane leaves fibre (SLF) biofilms via a solvent-casting method. The results showed that the tensile strength and Young’s modulus of PLA/SLF biofilms increased with the increasing of SLF content. Nevertheless, the elongation at break showed an opposite trend as compared to tensile strength and Young’s modulus of biofilms. Moreover, water absorption properties of PLA/SLF biofilms increased with the increasing of SLF content. In contrast, the tensile strength and Young’s modulus of biofilms were enhanced after bleaching treatment with hydrogen peroxide on SLF, but the elongation at break and water absorption properties of bleached biofilms were reduced due to the improvement of filler–matrix adhesion in biofilms. The tensile and water properties were further discussed using B-factor and Fick’s law, respectively. Furthermore, the functional groups of unbleached and bleached SLF were characterized by Fourier transform infrared analysis.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chaitra Venkatesh ◽  
Yuanyuan Chen ◽  
Zhi Cao ◽  
Shane Brennan ◽  
Ian Major ◽  
...  

Abstract Poly (lactic acid)/halloysite nanotube (PLA/HNT) nanocomposites have been studied extensively over the past few years owing to the interesting properties of the polymer, PLA, and the nanoclay, HNT, individually and as composites. In this paper, the influence of the screw speed during extrusion was investigated and was found to have a significant impact on the mechanical and thermal performance of the extruded PLA/HNT nanocomposites. To determine the effect of screw speed on PLA/HNT nanocomposites, 5 and 10 wt% of HNTs were blended into the PLA matrix through compounding at screw speeds of 40, 80, and 140 rpm. Virgin PLA was compounded for comparison. The resultant polymer melt was quench cooled onto a calendar system to produce composite films which were assessed for mechanical, thermal, chemical, and surface properties. Results illustrate that in comparison to 40 and 80 rpm, the virgin PLA when compounded at 140 rpm, indicated a significant increase in the mechanical properties. The PLA/HNT 5 wt% nanocomposite compounded at 140 rpm showed significant improvement in the dispersion of HNTs in the PLA matrix which in turn enhanced the mechanical and thermal properties. This can be attributed to the increased melt shear at higher screw speeds.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1893 ◽  
Author(s):  
Přemysl Menčík ◽  
Radek Přikryl ◽  
Ivana Stehnová ◽  
Veronika Melčová ◽  
Soňa Kontárová ◽  
...  

This paper explores the influence of selected commercial plasticizers structure, which are based on esters of citric acid, on mechanical and thermal properties of Poly(3-hydroxybutyrate)/Poly(lactic acid)/Plasticizer biodegradable blends. These plasticizers were first tested with respect to their miscibility with Poly(3-hydroxybutyrate)/Poly(lactic acid) (PHB/PLA) blends using a kneading machine. PHB/PLA/plasticizer blends in the weight ratio (wt %) of 60/25/15 were then prepared by single screw and corotating meshing twin screw extruders in the form of filament for further three-dimensional (3D) printing. Mechanical, thermal properties, and shape stability (warping effect) of 3D printed products can be improved just by the addition of appropriate plasticizer to polymeric blend. The goal was to create new types of eco-friendly PHB/PLA/plasticizers blends and to highly improve the poor mechanical properties of neat PHB/PLA blends (with majority of PHB) by adding appropriate plasticizer. Mechanical properties of plasticized blends were then determined by the tensile test of 3D printed test samples (dogbones), as well as filaments. Measured elongation at break rapidly enhanced from 21% for neat non-plasticized PHB/PLA blends (reference) to 328% for best plasticized blends in the form of filament, and from 5% (reference) to 187% for plasticized blends in the form of printed dogbones. The plasticizing effect on blends was confirmed by Modulated Differential Scanning Calorimetry. The study of morphology was performed by the Scanning Electron Microscopy. Significant problem of plasticized blends used to be also plasticizer migration, therefore the diffusion of plasticizers from the blends after 15 days of exposition to 110 °C in the drying oven was investigated as their measured weight loss. Almost all of the used plasticizers showed meaningful positive softening effects, but the diffusion of plasticizers at 110 °C exposition was quite extensive. The determination of the degree of disintegration of selected plasticized blend when exposed to a laboratory-scale composting environment was executed to roughly check the “biodegradability”.


Author(s):  
Jamileh Shojaeiarani ◽  
Dilpreet Bajwa

Biopolymers are emerging materials with numerous capabilities of minimizing the environmental hazards caused by synthetic materials. The competitive mechanical properties of bio-based poly(lactic acid) (PLA) reinforced with cellulose nanocrystals (CNCs) have attracted a huge interest in improving the mechanical properties of the corresponding nanocomposites. To obtain optimal properties of PLA-CNC nanocomposites, the compatibility between PLA and CNCs needs to be improved through uniform dispersion of CNCs into PLA. The application of chemical surface functionalization technique is an essential step to improve the interaction between hydrophobic PLA and hydrophilic CNCs. In this study, a combination of a time-efficient esterification technique and masterbatch approach was used to improve the CNCs dispersibility in PLA. Nanocomposites reinforced by 1, 3, and 5 wt% functionalized CNCs were prepared using twin screw extrusion followed by injection molding process. The mechanical and dynamic mechanical properties of pure PLA and nanocomposites were studied through tensile, impact and dynamic mechanical analysis. The impact fractured surfaces were characterized using scanning electron microscopy. The mechanical test results exhibited that tensile strength and modulus of elasticity of nanocomposites improved by 70% and 11% upon addition of functionalized CNCs into pure PLA. The elongation at break and impact strength of nanocomposites exhibited 43% and 35% increase as compared to pure PLA. The rough and irregular fracture surface in nanocomposites confirmed the higher ductility in PLA nanocomposites as compared to pure PLA. The incorporation of functionalized CNCs into PLA resulted in an increase in storage modulus and a decrease in tan δ intensity which was more profound in nanocomposites reinforced with 3 wt% functionalized CNCs.


2019 ◽  
Vol 947 ◽  
pp. 200-204
Author(s):  
Sirirat Wacharawichanant ◽  
Patteera Opasakornwong ◽  
Ratchadakorn Poohoi ◽  
Manop Phankokkruad

This work studied the improvement of poly (lactic acid) (PLA) properties by adding propylene-ethylene copolymer (PEC) and α-cellulose (AC). The PLA blends and composites were melt mixed by an internal mixer and molded by compression method. The morphological analysis observed the phase separation of PLA/PEC blends due to minor PEC phase dispersed as spherical shape in PLA phase, indicating a poor interfacial adhesion between PLA and PEC phases. The incorporation of AC did not improve the compatibility of polymer blends. Young’s modulus and tensile strength of PLA blends reduced with increasing amount of PEC because the elastics of ethylene molecules in PEC structure. Young’s modulus of PLA/PEC/AC composites increased with increasing AC contents. The stress at break of the PLA/PEC blends was improved with the presence of AC. The strain at break of PLA/PEC blends increased with increasing PEC contents, and the presence of AC showed the decrease of strain at break of PLA/PEC blends.


Sign in / Sign up

Export Citation Format

Share Document