scholarly journals Printability and Tensile Performance of 3D Printed Polyethylene Terephthalate Glycol Using Fused Deposition Modelling

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1220 ◽  
Author(s):  
Sofiane Guessasma ◽  
Sofiane Belhabib ◽  
Hedi Nouri

Polyethylene terephthalate glycol (PETG) is a thermoplastic formed by polyethylene terephthalate (PET) and ethylene glycol and known for his high impact resistance and ductility. The printability of PETG for fused deposition modelling (FDM) is studied by monitoring the filament temperature using an infra-red camera. The microstructural arrangement of 3D printed PETG is analysed by means of X-ray micro-tomography and tensile performance is investigated in a wide range of printing temperatures from 210 °C to 255 °C. A finite element model is implemented based on 3D microstructure of the printed material to reveal the deformation mechanisms and the role of the microstructural defects on the mechanical performance. The results show that PETG can be printed within a limited range of printing temperatures. The results suggest a significant loss of the mechanical performance due to the FDM processing and particularly a substantial reduction of the elongation at break is observed. The loss of this property is explained by the inhomogeneous deformation of the PETG filament. X-ray micro-tomography results reveal a limited amount of process-induced porosity, which only extends through the sample thickness. The FE predictions point out the combination of local shearing and inhomogeneous stretching that are correlated to the filament arrangement within the plane of construction.

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1778 ◽  
Author(s):  
Guessasma ◽  
Belhabib ◽  
Nouri

The microstructure and mechanical performance of wood-based filament is investigated in the case of Fused Deposition Modelling (FDM) technique using experimental and numerical approaches. The printing process of wood-PLA/PHA is conducted by varying the printing temperature, typically from 210 °C to 250 °C. The filament temperature during the laying down is measured using infra-red camera to study the thermal cycling. In addition, X-ray micro-tomography is used to evaluate the material arrangement of printed wood-PLA/PHA at different length scales. Tensile experiments are performed to rank the loss in mechanical performance with respect to the filament properties. Finally, finite element computation is considered to predict the tensile behaviour based on the implementation of the real 3D microstructure issued from X-ray micro-tomography. The results show that the wood-based filament is printable over a wide range of temperatures and exhibits a marked heat accumulation tendency at high printing temperatures. However, the limited gain in tensile performance at these temperatures makes 220 °C an optimal choice for printing wood-based filament. The elongation at break of 3D-printed wood-PLA/PHA is remarkably similar to the results observed for the filament. Finite element computation reveals that despite this apparent similarity, the associated deformation mechanisms are different.


2021 ◽  
Vol 30 ◽  
pp. 263498332110000
Author(s):  
Helge Schneevogt ◽  
Kevin Stelzner ◽  
Buket Yilmaz ◽  
Bilen Emek Abali ◽  
André Klunker ◽  
...  

Herein, the effects of recycled polymers on the mechanical properties of additively manufactured specimens, specifically those derived by fused deposition modelling, are determined. The intention is to investigate how 3D-printing can be more sustainable and how recycled polymers compare against conventional ones. Initially, sustainability is discussed in general and more sustainable materials such as recycled filaments and biodegradable filaments are introduced. Subsequently, a comparison of the recycled filament recycled Polyethylene terephthalate (rePET) and a conventional Polyethylene terephthalate with glycol (PETG) filament is drawn upon their mechanical performance under tension, and the geometry and slicing strategy for the 3D-printed specimens is discussed. Finally, the outcomes from the experiments are compared against numerically determined results and conclusions are drawn.


TEM Journal ◽  
2020 ◽  
pp. 966-970
Author(s):  
Damir Hodžić ◽  
Adi Pandžić ◽  
Ismar Hajro ◽  
Petar Tasić

Widely used additive manufacturing technique for plastic materials is Fused Deposition Modelling (FDM). The FDM technology has gained interest in industry for a wide range of applications, especially today when large number of different materials on the market are available. There are many different manufacturers for the same FDM material where the difference in price goes up to 50%. This experimental study investigates possible difference in strength of the 3D printed PLA material of five different manufacturers. All specimens are 3D printed on Ultimaker S5 printer with the same printing parameters, and they are all the same colour.


2021 ◽  
Vol 27 (3) ◽  
pp. 465-474
Author(s):  
Martin Krčma ◽  
David Škaroupka ◽  
Petr Vosynek ◽  
Tomáš Zikmund ◽  
Jozef Kaiser ◽  
...  

Purpose This paper aims to focus on the evaluation of a polymer concrete as a three-dimensional (3D) printing material. An associated company has developed plastic concrete made from reused unrecyclable plastic waste. Its intended use is as a construction material. Design/methodology/approach The concrete mix, called PolyBet, composed of polypropylene and glass sand, is printed by the fused deposition modelling process. The process of material and parameter selection is described. The mechanical properties of the filled material were compared to its cast state. Samples were made from castings and two different orientations of 3D-printed parts. Three-point flex tests were carried out, and the area of the break was examined. Computed tomography of the samples was carried out. Findings The influence of the 3D printing process on the material was evaluated. The mechanical performance of the longitudinal samples was close to the cast state. There was a difference in the failure mode between the states, with cast parts exhibiting a tougher behaviour, with fractures propagating in a stair-like manner. The 3D-printed samples exhibited high degrees of porosity. Originality/value The results suggest that the novel material is a good fit for 3D printing, with little to no degradation caused by the process. Layer adhesion was shown to be excellent, with negligible effect on the finished part for the longitudinal orientation. That means, if large-scale testing of buildability is successful, the material is a good fit for additive manufacturing of building components and other large-scale structures.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3555
Author(s):  
Patrich Ferretti ◽  
Gian Maria Santi ◽  
Christian Leon-Cardenas ◽  
Elena Fusari ◽  
Giampiero Donnici ◽  
...  

Additive manufacturing processes have evolved considerably in the past years, growing into a wide range of products through the use of different materials depending on its application sectors. Nevertheless, the fused deposition modelling (FDM) technique has proven to be an economically feasible process turning additive manufacture technologies from consumer production into a mainstream manufacturing technique. Current advances in the finite element method (FEM) and the computer-aided engineering (CAE) technology are unable to study three-dimensional (3D) printed models, since the final result is highly dependent on processing and environment parameters. Because of that, an in-depth understanding of the printed geometrical mesostructure is needed to extend FEM applications. This study aims to generate a homogeneous structural element that accurately represents the behavior of FDM-processed materials, by means of a representative volume element (RVE). The homogenization summarizes the main mechanical characteristics of the actual 3D printed structure, opening new analysis and optimization procedures. Moreover, the linear RVE results can be used to further analyze the in-deep behavior of the FDM unit cell. Therefore, industries could perform a feasible engineering analysis of the final printed elements, allowing the FDM technology to become a mainstream, low-cost manufacturing process in the near future.


2020 ◽  
Vol 26 (1) ◽  
pp. 122-133 ◽  
Author(s):  
Sofiane Guessasma ◽  
Sofiane Belhabib ◽  
Hedi Nouri

Purpose This paper aims to investigate the effect of printing temperature on the thermal and the mechanical behaviour of polylactic acid (PLA)-polyhydroxyalkanoate (PHA) blend printed using fused deposition modelling (FDM). Design/methodology/Approach Because of the use of an infra-red camera, thermal cycling during the laying down is quantified. In addition, X-ray micro-tomography is considered to reveal the microstructural arrangement within the three-dimensional printed material. Tensile loading conditions are used to derive Young’s modulus, tensile strength and fracture toughness, and relate these to the printing temperature. Finite element computation based on three-dimensional microstructure information is used to predict the role of defects on the tensile performance. Findings The results show a remarkable cohesive structure of PLA-PHA, particularly at 240°C. This cohesive structure is explained by the ability to ensure heat accumulation during laying down as evidenced by the nature of thermal cycling. The printing temperature is found to be a key factor for tuning the ductility of the printed PLA-PHA allowing full restoration of tensile strength at high printing temperature. Originality/value This study reports new results related to the thermo-mechanical behaviour of PLA-PHA that did not receive much attention in three-dimensional printing despite its potential as a candidate for pharmacological and medical applications. This study concludes by a wide range of possible printing temperatures for PLA-PHA and a remarkable low porosity generated by FDM.


2018 ◽  
Vol 774 ◽  
pp. 161-166 ◽  
Author(s):  
Octavio Andrés González-Estrada ◽  
Alberto Pertuz ◽  
Jabid E. Quiroga Mendez

Three-dimensional (3D) printing technology has been traditionally used for the production of prototypes. Recently, developments in 3D printing using Fused Deposition Modelling (FDM) and reinforcement with continuous fibres (fiberglass and carbon fibre), have allowed the manufacture of functional prototypes, considerably improving the mechanical performance of the composite parts. In this work, we characterise the elastic tensile properties of fibre reinforced specimens, considering the variation of several parameters available during the printing process: fibre orientation, volume fraction, fill pattern, reinforcement distribution. Tensile tests were performed according to ASTM D638 to obtain Young’s modulus and ultimate strength for different material configurations available during the printing process. We also perform a fractographic analysis using Scanning Electron Microscopy (SEM) to give an insight of the failure mechanisms present in the specimens.


2020 ◽  
Author(s):  
Sherby Suet-Ying Pang ◽  
Evan Fang ◽  
Kam Wai Chen ◽  
Matthew Leung ◽  
Velda Ling-Yu Chow ◽  
...  

Abstract Background: Patients who undergo decompressive craniectomy (DC) are often fitted with a protective helmet that protects the craniectomy site from injury during rehabilitation. However, conventional “one-size-fits-all” helmets may not be feasible for certain craniectomy defects. We describe the production and use of a custom 3D-printed helmet for a DC patient where a conventional helmet was not feasible due to the craniectomy defect configuration.Case presentation: A 65-year-old male with ethmoid sinonasal carcinoma underwent cranionasal resection and DC with free vastus lateralis flap reconstruction to treat cerebrospinal fluid leakage. He required an external helmet to protect the craniectomy site, however, the rim of a conventional helmet compressed the craniectomy site, and the straps compressed the vascular pedicle of the muscle flap. Computed topography (CT) scans of the patient’s cranium were imported into 3D modelling software and used to fabricate a patient-specific, strapless helmet using fused deposition modelling (FDM). The final helmet fit the patient perfectly and circumvented the compression issues, while also providing better cosmesis than the conventional helmet. Four months postoperatively, the helmet remains intact and in use.Conclusions: 3D printing can be used to produce low-volume, patient-specific external devices for rehabilitation where standardized adjuncts not optimal. Once initial start-up costs and training are overcome, these devices can be produced by surgeons themselves to meet a wide range of clinical needs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Atefeh Golbang ◽  
Mozaffar Mokhtari ◽  
Eileen Harkin-Jones ◽  
Edward Archer ◽  
Alistair Mcilhagger

In this study, PEEK nanocomposites with 0, 0.5, 1, and 2wt% IF-WS2 were manufactured by injection moulding and Fused Deposition Modelling (FDM). To compare the impact of the two processing methods and the incorporated nanoparticles on the morphology, crystallization and final mechanical properties of the nanocomposites, SEM, DSC and tensile testing were performed. In general, a good distribution of nanoparticles was observed in PEEK, although larger agglomerates were visible at 2 wt% IF-WS2. The crystallization degree of PEEK increased with increasing loading of IF-WS2 nanoparticles up to 1wt% and then declined at 2 wt%, due to lower level of particle dispersion in this sample. The 3D printed samples showed slightly higher crystallinity at each IF-WS2 loading in relation to the injection moulded samples and extruded filaments, because of multiple reheating effect from subsequent layer deposition during FDM, causing recrystallization. In general, incorporation of IF-WS2 nanoparticles increased the mechanical properties of pure PEEK in both 3D printed and injection moulded samples. However, this increment was more noticeable in the 3D-printed nanocomposite samples, resulting in smaller gap between the mechanical properties of the 3D-printed samples and the injection moulded counterparts, in respect to pure PEEK, particularly at 1 wt% IF-WS2. This effect is ascribed to the increased inter-layer bonding of PEEK in the presence of IF-WS2 nanoparticles in FDM. In general, the lower mechanical properties of the 3D printed samples compared with the injection moulded ones are ascribed to poor interlayer bonding between the deposited layers and the presence of voids. However, addition of just 1 wt% of IF-WS2 nanoparticles into PEEK increased the tensile strength and Young’s modulus of the FDM PEEK materials to similar levels to those achieved for unfilled injection moulded PEEK. Therefore, incorporation of IF-WS2 nanoparticles into PEEK is a useful strategy to improve the mechanical performance of FDM PEEK.


Sign in / Sign up

Export Citation Format

Share Document