scholarly journals Patient-specific 3D-printed Helmet for Post-craniectomy Defect – A Case Report

Author(s):  
Sherby Suet-Ying Pang ◽  
Evan Fang ◽  
Kam Wai Chen ◽  
Matthew Leung ◽  
Velda Ling-Yu Chow ◽  
...  

Abstract Background: Patients who undergo decompressive craniectomy (DC) are often fitted with a protective helmet that protects the craniectomy site from injury during rehabilitation. However, conventional “one-size-fits-all” helmets may not be feasible for certain craniectomy defects. We describe the production and use of a custom 3D-printed helmet for a DC patient where a conventional helmet was not feasible due to the craniectomy defect configuration.Case presentation: A 65-year-old male with ethmoid sinonasal carcinoma underwent cranionasal resection and DC with free vastus lateralis flap reconstruction to treat cerebrospinal fluid leakage. He required an external helmet to protect the craniectomy site, however, the rim of a conventional helmet compressed the craniectomy site, and the straps compressed the vascular pedicle of the muscle flap. Computed topography (CT) scans of the patient’s cranium were imported into 3D modelling software and used to fabricate a patient-specific, strapless helmet using fused deposition modelling (FDM). The final helmet fit the patient perfectly and circumvented the compression issues, while also providing better cosmesis than the conventional helmet. Four months postoperatively, the helmet remains intact and in use.Conclusions: 3D printing can be used to produce low-volume, patient-specific external devices for rehabilitation where standardized adjuncts not optimal. Once initial start-up costs and training are overcome, these devices can be produced by surgeons themselves to meet a wide range of clinical needs.

TEM Journal ◽  
2020 ◽  
pp. 966-970
Author(s):  
Damir Hodžić ◽  
Adi Pandžić ◽  
Ismar Hajro ◽  
Petar Tasić

Widely used additive manufacturing technique for plastic materials is Fused Deposition Modelling (FDM). The FDM technology has gained interest in industry for a wide range of applications, especially today when large number of different materials on the market are available. There are many different manufacturers for the same FDM material where the difference in price goes up to 50%. This experimental study investigates possible difference in strength of the 3D printed PLA material of five different manufacturers. All specimens are 3D printed on Ultimaker S5 printer with the same printing parameters, and they are all the same colour.


2020 ◽  
Author(s):  
Michael Yue-Cheng Chen ◽  
Jacob Skewes ◽  
Ryan Daley ◽  
Maria Ann Woodruff ◽  
Nicholas John Rukin

Abstract BackgroundThree-dimensional (3D) printing is a promising technology but the limitations are often poorly understood. We compare different 3D printingmethods with conventional machining techniques in manufacturing meatal urethral dilators which were recently removed from the Australian market. MethodsA prototype dilator was 3D printed vertically orientated on a low cost fused deposition modelling (FDM) 3D printer in polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). It was also 3D printed horizontally orientated in ABS on a high-end FDM 3D printer with soluble support material, as well as on a SLS 3D printer in medical nylon. The dilator was also machined in stainless steel using a lathe. All dilators were tested mechanically in a custom rig by hanging calibrated weights from the handle until the dilator snapped. ResultsThe horizontally printed ABS dilator experienced failure at a greater load than the vertically printed PLA and ABS dilators respectively (503g vs 283g vs 163g, p < 0.001). The SLS nylon dilator and machined steel dilator did not fail. The steel dilator is most expensive with a quantity of five at 98 USD each, but this decreases to 30 USD each for a quantity of 1000. In contrast, the cost for the SLS dilator is 33 USD each for five and 27 USD each for 1000. ConclusionsAt the current time 3D printing is not a replacement for conventional manufacturing. 3D printing is best used for patient-specific parts, prototyping or manufacturing complex parts that have additional functionality that cannot otherwise beachieved.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3555
Author(s):  
Patrich Ferretti ◽  
Gian Maria Santi ◽  
Christian Leon-Cardenas ◽  
Elena Fusari ◽  
Giampiero Donnici ◽  
...  

Additive manufacturing processes have evolved considerably in the past years, growing into a wide range of products through the use of different materials depending on its application sectors. Nevertheless, the fused deposition modelling (FDM) technique has proven to be an economically feasible process turning additive manufacture technologies from consumer production into a mainstream manufacturing technique. Current advances in the finite element method (FEM) and the computer-aided engineering (CAE) technology are unable to study three-dimensional (3D) printed models, since the final result is highly dependent on processing and environment parameters. Because of that, an in-depth understanding of the printed geometrical mesostructure is needed to extend FEM applications. This study aims to generate a homogeneous structural element that accurately represents the behavior of FDM-processed materials, by means of a representative volume element (RVE). The homogenization summarizes the main mechanical characteristics of the actual 3D printed structure, opening new analysis and optimization procedures. Moreover, the linear RVE results can be used to further analyze the in-deep behavior of the FDM unit cell. Therefore, industries could perform a feasible engineering analysis of the final printed elements, allowing the FDM technology to become a mainstream, low-cost manufacturing process in the near future.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1220 ◽  
Author(s):  
Sofiane Guessasma ◽  
Sofiane Belhabib ◽  
Hedi Nouri

Polyethylene terephthalate glycol (PETG) is a thermoplastic formed by polyethylene terephthalate (PET) and ethylene glycol and known for his high impact resistance and ductility. The printability of PETG for fused deposition modelling (FDM) is studied by monitoring the filament temperature using an infra-red camera. The microstructural arrangement of 3D printed PETG is analysed by means of X-ray micro-tomography and tensile performance is investigated in a wide range of printing temperatures from 210 °C to 255 °C. A finite element model is implemented based on 3D microstructure of the printed material to reveal the deformation mechanisms and the role of the microstructural defects on the mechanical performance. The results show that PETG can be printed within a limited range of printing temperatures. The results suggest a significant loss of the mechanical performance due to the FDM processing and particularly a substantial reduction of the elongation at break is observed. The loss of this property is explained by the inhomogeneous deformation of the PETG filament. X-ray micro-tomography results reveal a limited amount of process-induced porosity, which only extends through the sample thickness. The FE predictions point out the combination of local shearing and inhomogeneous stretching that are correlated to the filament arrangement within the plane of construction.


2021 ◽  
Vol 4 (3) ◽  
pp. 54
Author(s):  
Athanasios Argyropoulos ◽  
Pantelis N. Botsaris

Three-dimensional (3D) printing is a leading manufacturing technique in the medical field. The constantly improving quality of 3D printers has revolutionized the approach to new challenges in medicine for a wide range of applications including otoplasty, medical devices, and tissue engineering. The aim of this study is to provide a comprehensive overview of an artificial ear splint model applied to the human auricle for the treatment of stick-out protruding ears. The deformity of stick-out protruding ears remains a significant challenge, where the complex and distinctive shape preservation are key factors. To address this challenge, we have developed a protocol that involves photogrammetry techniques, reverse engineering technologies, a smart prototype design, and 3D printing processes. Specifically, we fabricated a 3D printed ear splint model via fused deposition modelling (FDM) technology by testing two materials, a thermoplastic polyester elastomer material (Z-Flex) and polycaprolactone (PCL 100). Our strategy affords a custom-made and patient-specific artificial ear aligner with mechanical properties that ensures sufficient preservation of the auricular shape by applying a force on the helix and antihelix and enables the ears to pin back to the head.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1021
Author(s):  
Bernhard Dorweiler ◽  
Pia Elisabeth Baqué ◽  
Rayan Chaban ◽  
Ahmed Ghazy ◽  
Oroa Salem

As comparative data on the precision of 3D-printed anatomical models are sparse, the aim of this study was to evaluate the accuracy of 3D-printed models of vascular anatomy generated by two commonly used printing technologies. Thirty-five 3D models of large (aortic, wall thickness of 2 mm, n = 30) and small (coronary, wall thickness of 1.25 mm, n = 5) vessels printed with fused deposition modeling (FDM) (rigid, n = 20) and PolyJet (flexible, n = 15) technology were subjected to high-resolution CT scans. From the resulting DICOM (Digital Imaging and Communications in Medicine) dataset, an STL file was generated and wall thickness as well as surface congruency were compared with the original STL file using dedicated 3D engineering software. The mean wall thickness for the large-scale aortic models was 2.11 µm (+5%), and 1.26 µm (+0.8%) for the coronary models, resulting in an overall mean wall thickness of +5% for all 35 3D models when compared to the original STL file. The mean surface deviation was found to be +120 µm for all models, with +100 µm for the aortic and +180 µm for the coronary 3D models, respectively. Both printing technologies were found to conform with the currently set standards of accuracy (<1 mm), demonstrating that accurate 3D models of large and small vessel anatomy can be generated by both FDM and PolyJet printing technology using rigid and flexible polymers.


2021 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Nuno Venâncio ◽  
Gabriela G. Pereira ◽  
João F. Pinto ◽  
Ana I. Fernandes

Patient-centric therapy is especially important in pediatrics and may be attained by three-dimensional printing. Filaments containing 30% w/w of theophylline were produced by hot-melt extrusion and printed using fused deposition modelling to produce tablets. Here, preliminary results evaluating the effect of infill geometry (cross, star, grid) on drug content and release are reported.


Author(s):  
Varun Sharma ◽  
Khaja Moinuddin Shaik ◽  
Archita Choudhury ◽  
Pramod Kumar ◽  
Prateek Kala ◽  
...  

The present research paper attempts to study the effect of different process parameters on the dissolution rate during 3D printed tablets. Three-dimensional printing has the potential of serving tailored made tablets to cater personalized drug delivery systems. Fluorescein loaded PVA filaments through impregnation route was used to fabricate tablets based on Taguchi based design of experimentation using Fused Deposition Modelling (FDM). The effect of print speed, infill percentage and layer thickness were analyzed to study the effect on rate of dissolution. Infill percentage followed by print speed were found to be critical parameters affecting dissolution rate. The data analysis provided an insight into the study of interaction among different 3D printing parameters to develop an empirical relation for percentage release of the drug in human body.


2021 ◽  
Vol 63 (1) ◽  
pp. 73-78
Author(s):  
Pulkin Gupta ◽  
Sudha Kumari ◽  
Abhishek Gupta ◽  
Ankit Kumar Sinha ◽  
Prashant Jindal

Abstract Fused deposition modelling (FDM) is a layer-by-layer manufacturing process type of 3D-printing (3DP). Significant variation in the mechanical properties of 3D printed specimens is observed because of varied process parameters and interfacial bonding between consecutive layers. This study investigates the influence of heat treatment on the mechanical strength of FDM 3D printed Polylactic acid (PLA) parts with constant 3DP parameters and ambient conditions. To meet the objectives, 7 sets, each containing 5 dog-bone shaped samples, were fabricated from commercially available PLA filament. Each set was subjected to heat treatment at a particular temperature for 1 h and cooled in the furnace itself, while one set was left un-treated. The temperature for heat treatment (Th) varied from 30 °C to 130 °C with increments of 10 °C. The heat-treated samples were characterized under tensile loading of 400 N and mechanical properties like Young’s modulus (E), Strain % ( ε ) and Stiffness (k) were evaluated. On comparing the mechanical properties of heat-treated samples to un-treated samples, significant improvements were observed. Heat treatment also altered the geometries of the samples. Mechanical properties improved by 4.88 % to 10.26 % with the maximum being at Th of 110 °C and below recrystallization temperature (Tr) of 65 °C. Deformations also decreased significantly at higher temperatures above 100 °C, by a maximum of 36.06 %. The dimensions of samples showed a maximum decrease of 1.08 % in Tr range and a maximum decrease of 0.31 % in weight at the same temperature. This study aims to benefit the society by establishing suitable Th to recover the lost strength in PLA based FDM 3D printed parts.


Sign in / Sign up

Export Citation Format

Share Document