scholarly journals Fabrication of Hybrid Membranes Containing Nylon-11 and Organic Semiconductor Particles with Potential Applications in Molecular Electronics

Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Sánchez-Vergara ◽  
Guevara-Martínez ◽  
Arreola-Castillo ◽  
Mendoza-Sevilla

Chemical degradation is a major disadvantage in the development of organic semiconductors. This work proposes the manufacture and characterization of organic semiconductor membranes in order to prevent semiconductor properties decreasing. Semiconductor membranes consisting of Nylon-11 and particles of π-conjugated molecular semiconductors were manufactured by high-vacuum evaporation followed by thermal relaxation. Initially, and with the aim of obtaining semiconductor particles, bulk heterojunction (BHJ) was carried out using green chemistry techniques between the zinc phthalocyanine (ZnPc) and the zinc hexadecafluoro-phthalocyanine (F16ZnPc) as n-type molecular semiconductors with the p-type molecular semiconductor dibenzotetrathiafulvalene (DBTTF). Consequently, the π-conjugated semiconductors particles were embedded in a Nylon-11 matrix and characterized, both structurally and considering their optical and electrical properties. Thin films of these materials were manufactured in order to comparatively study the membranes and precursor semiconductor particles. The membranes presented bandgap (Eg) values that were lower than those obtained in the films, which is an indicator of an improvement in their semiconductor capacity. Finally, the membranes were subjected to accelerated lighting conditions, to determine the stability of the polymer and the operating capacity of the membrane. After fatigue conditions, the electrical behavior of the proposed semiconductor membranes remained practically unaltered; therefore, they could have potential applications in molecular electronics. The chemical stability of membranes, which did not degrade in their polymer compound, nor in the semiconductor, was monitored by IR spectroscopy.

Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
C. Ewins ◽  
J.R. Fryer

The preparation of thin films of organic molecules is currently receiving much attention because of the need to produce good quality thin films for molecular electronics. We have produced thin films of the polycyclic aromatic, perylene C10H12 by evaporation under high vacuum onto a potassium chloride (KCl) substrate. The role of substrate temperature in determining the morphology and crystallography of the films was then investigated by transmission electron microscopy (TEM).The substrate studied was the (001) face of a freshly cleaved crystal of KCl. The temperature of the KCl was controlled by an electric heater or a cold finger. The KCl was heated to 200°C under a vacuum of 10-6 torr and allowed to cool to the desired temperature. The perylene was then evaporated over a period of one minute from a molybdenum boat at a distance of 10cm from the KCl. The perylene thin film was then backed with an amorphous layer of carbon and floated onto copper microscope grids.


2019 ◽  
Vol 55 (9) ◽  
pp. 1306-1309 ◽  
Author(s):  
Dorothy K. Jones ◽  
Brendan Kerwin ◽  
Wenjing Zhao ◽  
Nagarjuna Gavvalapalli

Organic semiconductor particle growth and shape are modified by using aryl amphiphiles having different hydrophobe geometry.


2016 ◽  
Vol 55 (2S) ◽  
pp. 02BB12 ◽  
Author(s):  
Navaphun Kayunkid ◽  
Adirek Rangkasikorn ◽  
Chaloempol Saributr ◽  
Jiti Nukeaw

Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 540 ◽  
Author(s):  
Huanchun Wang ◽  
Junping Ding ◽  
Haomin Xu ◽  
Lina Qiao ◽  
Xuanjun Wang ◽  
...  

Cuprous based chalcogenides have attracted intensive research interest due to the potential applications in solar energy conversion. However, typical fabrications of these compounds are often carried out under severe conditions, such as inert gas protection, high vacuum, and/or extreme high temperature. Here we reported a one-pot process for cuprous based chalcogenides synthesis in aqueous solution. A strategy for BiCuSO nanosheets fabrication without toxic chemicals or rigorous reagents at pretty low temperatures under an ambient atmosphere was established, with the practicality of morphology controlling and the compatibility of multifarious precursors. Platelike BiCuSO with a thickness range from several to hundreds nanometers are fabricated by adjusting the alkali concentration, reaction time, and temperature. The positive effect of alkali hydroxide concentration is proposed cautiously based on the experimental results. The photocatalytic activities of BiCuSO nanosheet under UV, visible, and near-infrared irradiation were also investigated. BiCuSO obtained at room temperature with a thickness of 4.5 nm showed the most impressive efficiency to decompose organic contaminants. Our research presented a new way for cuprous sulfides fabrication, and might open up a new vista for large-scale synthesis of cuprous based materials as promising broadband spectrum light-absorbing materials.


2003 ◽  
Vol 326 (1-4) ◽  
pp. 94-96 ◽  
Author(s):  
J.Piroto Duarte ◽  
R.C. Vilão ◽  
J.M. Gil ◽  
H.V. Alberto ◽  
N. Ayres de Campos ◽  
...  

2015 ◽  
Vol 6 ◽  
pp. 1927-1934 ◽  
Author(s):  
Antoine Hinaut ◽  
Rémy Pawlak ◽  
Ernst Meyer ◽  
Thilo Glatzel

Large organic molecules are of important interest for organic-based devices such as hybrid photovoltaics or molecular electronics. Knowing their adsorption geometries and electronic structures allows to design and predict macroscopic device properties. Fundamental investigations in ultra-high vacuum (UHV) are thus mandatory to analyze and engineer processes in this prospects. With increasing size, complexity or chemical reactivity, depositing molecules by thermal evaporation becomes challenging. A recent way to deposit molecules in clean conditions is Electrospray Ionization (ESI). ESI keeps the possibility to work with large molecules, to introduce them in vacuum, and to deposit them on a large variety of surfaces. Here, ESI has been successfully applied to deposit triply fused porphyrin molecules on an insulating KBr(001) surface in UHV environment. Different deposition coverages have been obtained and characterization of the surface by in-situ atomic force microscopy working in the non-contact mode shows details of the molecular structures adsorbed on the surface. We show that UHV-ESI, can be performed on insulating surfaces in the sub-monolayer regime and to single molecules which opens the possibility to study a variety of complex molecules.


1997 ◽  
Vol 488 ◽  
Author(s):  
J. P. Rainho ◽  
L. Santos ◽  
A. A. Kharlamov

AbstractPreparation and characterization either by optical absorption, photoluminescence and micro-Raman spectroscopy of individual components as well as bilayers consisting of organic dye semiconductor Zinc Phthalocyanine (ZnPc) and fullerene, C60, thin films are reported. The layers and structures were deposited in vacuum and some fullerene films were also prepared by casting the C60 solution in benzene. The optical absorption and photoluminescence dependencies on film thickness in bilayers C60/ZnPc were observed and may be discussed in a context of interface induced simmetry reduction of C60 molecules.


2009 ◽  
Vol 30 (3) ◽  
pp. 034009 ◽  
Author(s):  
Shi Yunbo ◽  
Lei Tingping ◽  
Li Zan ◽  
Xiu Debin ◽  
Zhao Wenjie ◽  
...  

1993 ◽  
Vol 298 ◽  
Author(s):  
A.S. Barriere ◽  
S. Raoux ◽  
P.N. Favennec ◽  
H. L'haridon ◽  
D. Moutonnet

AbstractCa1-xErxF2+x thin films, with a substitution rate, x, varying from 1 to 20%, were deposited on Si(100) substrates by sublimation of high purity solid solution powders under ultra-high-vacuum. Rutherford backscattering studies have shown that the films have the composition of the initial solid solution powders, are quite homogeneous and are epitaxially grown on the substrates.The optical properties of these films were studied by means of cathodoluminescence and photoluminescence. At room temperature, the emissions due to the de-excitations from the 4S3/2, 4F9/2, 4I11/2 and 4I13/2 excited levels to the 4I15/2 ground state of Er3+ (4f11) ions are easily detected (λ = 0.548, 0.66, 0.98 and 1.53 μm)The strong 1.53 μm infrared luminescence, which presents evident potential applications for optical communications, is maximum for an erbium substitution rate included between 15 and 17%. These Er concentrations are three or four orders of magnitude greater than the optimum ones in the case of Er-doped semiconductors, which are close to 1018 cm-3. In the visible range, the luminescences are also important.They allow us to detect high energy ion or electron beams. However their maximum efficiencies were observed for a relatively low erbium concentration, close to 1%. These different behaviours are explained by the cross relaxation phenomena, which depopulate the higher levels to the benefit of the 4I13/2 → 4I15/2 transition.The energy distribution of the Stark sublevels of the 4I15/2 state, which results from crystal field splitting, was deduced from a photoluminescence study at 2K. The obtained results show that the environment of the luminescent centres does not change with the erbium concentration.At last, it must be noted that the refractive index of the layers increases with the erbium concentration, leading to the realization of optical guides. Consequently opto-electronic components could be developed from such erbium doped heterostructures.


Sign in / Sign up

Export Citation Format

Share Document