scholarly journals Synthesis of Lignin-Based Polyacid Catalyst and Its Utilization to Improve Water Resistance of Urea–formaldehyde Resins

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 175 ◽  
Author(s):  
Shishuai Gao ◽  
Yupeng Liu ◽  
Chunpeng Wang ◽  
Fuxiang Chu ◽  
Feng Xu ◽  
...  

In this study, a lignin-based polyacid catalyst was synthesized via two steps to enhance water resistance of urea–formaldehyde (UF) resins. The first steps involved a hydroxymethylation reaction to increase the hydroxyl content in lignin. Then, hydroxymethylated lignins were reacted with maleic anhydride to form maleated lignin-based polyacids. The acid groups were expected to function as acid catalysts to catalyze the curing process of UF resin. In order to elucidate the structural variation, 3-methoxy-4-hydroxyphenylpropane as a typical guaiacol lignin structural unit was used as a model compound to observe the hydroxymethylation and the reaction with maleic anhydride analyzed by 1H and 13C NMR. After the structural analysis of synthesized lignin-based polyacid by FTIR and 13C NMR, it was used to produce UF resin as an adhesive in plywood and medium density fiberboard (MDF) production, respectively. The results showed that when the addition of lignin-based polyacid was 5% in plywood, it could effectively improve the water resistance of UF resins as compared to commercial additive NH4Cl. It also exhibited a lower formaldehyde emission. Like plywood, lignin-based catalysts used in medium density fiberboard production could not only maintain the mechanical properties, but also inhibit the water adsorption of fiberboards.

RSC Advances ◽  
2021 ◽  
Vol 11 (40) ◽  
pp. 25010-25017
Author(s):  
Li Lu ◽  
Yan Wang ◽  
Tianhua Li ◽  
Supeng Wang ◽  
Shoulu Yang ◽  
...  

Reactions between CaCO3 and CH2O2 during polycondensation of UF resin produce Ca2+. Ionic bond complexation binds Ca2+ with UF resin. The UF resin crystalline percentage decreases from 26.86% to 22.71%. IB strength of resin bonded fiberboard increases from 0.75 to 0.94 MPa.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3718-3733
Author(s):  
Osman Camlibel

Physical, mechanical, and formaldehyde emission properties were studied for medium density fiberboard (MDF) produced with oak (75%) and pine (25%) fibers that had been mechanically refined in the presence of calcite particles. The calcite slurry was prepared at two levels of solids, 1.5% and 3% (10 and 20 kg·m-³). Chips were cooked for 4 min at 185 °C, under 8 bar vapor pressure in an Andritz defibrillator. 1.8% liquid paraffin, 0.72% ammonium sulphate solution, and 11% urea-formaldehyde were added by percentage based on oven-dried wood fibers in the blowline at the exit of the defibrator. The fibers were dried to 11% moisture content. MDF boards (2100 mm × 2800 mm × 18 mm) were created using a continuous hot-press process. The addition of calcite in the course of MDF production resulted in improved physical properties, such as thickness swelling (ThS 24 hours) and water absorption (WA 24 hours). MDF boards prepared with calcite exhibited higher internal bond (IB), modulus of rupture (MOR), and modulus of elasticity (MOE). Resistance to axial withdrawal of screw also was increased by addition of 3% calcite. In addition, the lowest levels of formaldehyde emission were observed for MDF prepared with calcite at the 3% level.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1435 ◽  
Author(s):  
Hamid R. Taghiyari ◽  
Ayoub Esmailpour ◽  
Roya Majidi ◽  
Jeffrey J. Morrell ◽  
Mohammad Mallaki ◽  
...  

Urea-formaldehyde (UF) resins are primary petroleum-based, increasing their potential environmental footprint. Identifying additives to reduce the total amount of resin needed without adversely affecting the panel properties could reduce these impacts. Wollastonite is a mineral containing calcium and silica that has been used as an additive in a variety of materials and may be useful as a resin extender. Nanoscale wollastonite has been shown to enhance the panel properties but is costly. Micron-scale wollastonite may be a less costly alternative. Medium-density fiberboards were produced by blending a hardwood furnish with UF alone, micron-sized wollastonite alone, or a 9:1 ratio of UF to wollastonite. Panels containing of only wollastonite had poor properties, but the properties of panels with 9:1 UF/wollastonite were similar to the UF-alone panels, except for the internal bond strength. The results suggest that small amounts of micron-sized wollastonite could serve as a resin extender. Further studies are suggested to determine if the micron-sized material has similar positive effects on the resin curing rate.


Holzforschung ◽  
2011 ◽  
Vol 65 (3) ◽  
Author(s):  
Sébastien Migneault ◽  
Ahmed Koubaa ◽  
Bernard Riedl ◽  
Hamid Nadji ◽  
James Deng ◽  
...  

Abstract Sludge of pulp and paper mills have natural adhesive properties. The primary sludge (PS, contains fibers) and secondary sludge (SS, contains proteins) could also be suitable for manufacturing medium-density fiberboard (MDF). Protein in SS can react with formaldehyde (HCHO), and as an additive in urea-formaldehyde (UF) resins it can reduce formaldehyde emission. Thus, SS was investigated in the present study. PS and SS were collected from two mills and characterized in terms of chemical composition, fiber length distribution, pH, and buffering capacity. MDF samples were processed according to an experimental design, in which UF resin content was reduced from 12% to 8% and replaced by SS in the range of 5%–15%. Gel time measurement showed high SS reactivity with UF resin. The SS reduced HCHO emissions by up to 68% compared to control panels, without compromising internal bond strength. The bonding effect of SS was lower than expected due to the high pH, thus the buffering capacity reduced UF performance. Moreover, sludge reduced bending performance. Dimensional stability was the greatest disadvantage of sludge panels.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5156-5178
Author(s):  
Muhammad Adly Rahandi Lubis ◽  
Byung-Dae Park ◽  
Min-Kug Hong

Oxidized starch (OS) adhesives with a balance between their adhesion and disintegration properties were prepared by controlling the degree of oxidation and modifying the cross-linker type and level to replace urea-formaldehyde (UF) resins for easy recycling of medium density fiberboard (MDF). Four molar ratios of H2O2/starch, two types of cross-linker, i.e., blocked-pMDI (B-pMDI) and citric acid (CA), and three levels of the cross-linkers were employed to tailor the performance of the OS adhesives. The OS reacted with the isocyanate groups from the B-pMDI to form amide linkages, while it formed ester linkages by reacting with the CA. The resulting B-pMDI/OS-bonded MDF had better physical and mechanical properties than the CA/OS-bonded MDF, with comparable adhesion (0.34 MPa) to UF resins and ten times greater degree of fiber disintegration than UF resins. The combination of a 0.5 molar ratio OS with 7.5 wt% of B-pMDI produced MDF exhibiting an optimal balance between adhesion and disintegration, suggesting that such OS adhesives could someday replace UF resins in manufacturing and recycling of MDF without formaldehyde emission.


2010 ◽  
Vol 26-28 ◽  
pp. 1056-1060
Author(s):  
Li Bin Zhu ◽  
Bo Han ◽  
Ji You Gu ◽  
Yan Hua Zhang ◽  
Hai Yan Tan ◽  
...  

The purpose of the study was to manufacture water-resistance plywood with using UF resin modified by emulsifiable polyisocyanate. The emulsifiable polyisocyanate which contains plenty of hydrophilic segments and teminal isocyanate groups were synthesized by reaction between various kinds of polyether polyols and polymeric methane dipthenyl diisocyanate (pMDI). A type of composite adhesive was obtained from the mixture of emulsifiable polyisocyanate and urea formaldehyde resin. The process parameters, such as the molar ratio of –NCO and –OH, mass fraction of emulsifiable polyisocyanate in UF resin and accessory ingredient have a great influence on the composite adhesive. X-ray photoelectron spectroscopy (XPS) had been used to analyze the chemical structure of bonding interface. The results showed that the composite adhesive consisting of UF resin and emulsifiable polyisocyanate content of 7.5% and kaolin content of 1.5% was used in plywood with high physical and mechanical properties, water resistance and low formaldehyde emission.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 29
Author(s):  
Waheed Gul ◽  
Hussein Alrobei ◽  
Syed Riaz Akbar Shah ◽  
Afzal Khan ◽  
Abid Hussain ◽  
...  

In this research work effect of embedment of multiwall carbon nanotubes (MWCNTs) on the physical and mechanical properties of medium density fiberboard (MDF) have been investigated. The MWCNTs were embedded in urea formaldehyde resin (UF) at 0, 1.5%, 3% and 5% concentrations by weight for the manufacturing of nano-MDF. The addition of these nanoparticles enhanced thermal conductivity by 24.2% reduced curing time by 20% and controlled formaldehyde emission by 59.4%. The internal bonding (I.B), modulus elasticity (MOE), modulus of rupture (MOR), thickness swelling (Ts) and water absorption (WA) properties were improved significantly by 21.15%, 30.2%, 28.3%, 44.8% and 29% respectively as compared to controlled MDF.


2010 ◽  
Vol 113-116 ◽  
pp. 2016-2020 ◽  
Author(s):  
Shi Feng Zhang ◽  
Jian Zhang Li ◽  
Ji Zhi Zhang ◽  
Yong Hua Li ◽  
Qiang Gao

For improving the performance of urea-formaldehyde (UF) resin, modified low molar ratio UF resins were developed to improve water resistance properties and reduce the formaldehyde emission of its bonded products. The effects of modifier feeding amount on the character of the cured resins were characterized by Fourier transform infrared spectroscopy (FTIR) measurement. The viscosity, pH value, solid content, free formaldehyde content, pot time, and curing time of the UF resins were also tested according to Chinese National Standards methods. The results show that the modified 1.00 molar ratio UF resins show lower free formaldehyde content and higher boiling-water-resistance comparing with unmodified ones. The boiling-water-resistant bonding strength of poplar plywood bonded with modified UF resin at 140 °C hot-press temperature can reach type I grade (100 °C water bath 3h) plywood requirement and the formaldehyde emission can meet the E0 grade plywood need.


Sign in / Sign up

Export Citation Format

Share Document