scholarly journals New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 334 ◽  
Author(s):  
Cristina Pavon ◽  
Miguel Aldas ◽  
Juan López-Martínez ◽  
Santiago Ferrándiz

In this work, different materials for three-dimensional (3D)-printing were studied, which based on polycaprolactone with two natural additives, gum rosin, and beeswax. During the 3D-printing process, the bed and extrusion temperatures of each formulation were established. After, the obtained materials were characterized by mechanical, thermal, and structural properties. The results showed that the formulation with containing polycaprolactone with a mixture of gum rosin and beeswax as additive behaved better during the 3D-printing process. Moreover, the miscibility and compatibility between the additives and the matrix were concluded through the thermal assessment. The mechanical characterization established that the addition of the mixture of gum rosin and beeswax provides greater tensile strength than those additives separately, facilitating 3D-printing. In contrast, the addition of beeswax increased the ductility of the material, which makes the 3D-printing processing difficult. Despite the fact that both natural additives had a plasticizing effect, the formulations containing gum rosin showed greater elongation at break. Finally, Fourier-Transform Infrared Spectroscopy assessment deduced that polycaprolactone interacts with the functional groups of the additives.

2021 ◽  
pp. 002199832110055
Author(s):  
Zeeshan Ahmad ◽  
Sabah Khan

Alumnium alloy LM 25 based composites reinforced with boron carbide at different weight fractions of 4%, 8%, and 12% were fabricated by stir casting technique. The microstructures and morphology of the fabricated composites were studied by scanning electron microscopy and energy dispersive spectroscopy. Elemental mapping of all fabricated composites were done to demonstrate the elements present in the matrix and fabricated composites. The results of microstructural analyses reveal homogenous dispersion of reinforcement particles in the matrix with some little amount of clustering found in composites reinforced with 12% wt. of boron carbide. The mechanical characterization is done for both alloy LM 25 and all fabricated composites based on hardness and tensile strength. The hardness increased from 13.6% to 21.31% and tensile strength 6.4% to 22.8% as reinforcement percentage of boron carbide particles increased from 0% to 12% wt. A fractured surface mapping was also done for all composites.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7954-7964
Author(s):  
Diego Gomez-Maldonado ◽  
Maria Soledad Peresin ◽  
Christina Verdi ◽  
Guillermo Velarde ◽  
Daniel Saloni

As the additive manufacturing process gains worldwide importance, the need for bio-based materials, especially for in-home polymeric use, also increases. This work aims to develop a composite of polylactic acid (PLA) and nanofibrillated cellulose (NFC) as a sustainable approach to reinforce the currently commercially available PLA. The studied materials were composites with 5 and 10% NFC that were blended and extruded. Mechanical, structural, and thermal characterization was made before its use for 3D printing. It was found that the inclusion of 10% NFC increased the modulus of elasticity in the filaments from 2.92 to 3.36 GPa. However, a small decrease in tensile strength was observed from 55.7 to 50.8 MPa, which was possibly due to the formation of NFC aggregates in the matrix. This work shows the potential of using PLA mixed with NFC for additive manufacturing.


2013 ◽  
Vol 681 ◽  
pp. 256-259
Author(s):  
Xiu Qi Liu ◽  
He Qin Xing ◽  
Li Li Zhao ◽  
Dan Wang

In our study, a new kind of foam composite was prepared by melt blending with PVC as the matrix and carbon black (CB) as the filler, the standard-spline was made in the dumbbell system prototype. Tensile strength and elongation at break were measured at 25°C。When the CB was added greater than 2.0%, with the increase of CB added, the determination of sample mechanical index began to decline, when the CB content was greater than 9%, tensile strength and elongation at break of the composites remained basically unchanged.


2005 ◽  
Vol 21 (3) ◽  
pp. 183-199
Author(s):  
G.K. Jana ◽  
C.K. Das

De-vulcanization of vulcanized elastomers represents a great challenge because of their three-dimensional network structure. Sulfur-cured gum natural rubbers containing three different sulfur/accelerator ratios were de-vulcanized by thio-acids. The process was carried out at 90 °C for 10 minutes in an open two-roll cracker-cum-mixing mill. Two concentrations of de-vulcanizing agent were tried in order to study the cleavage of the sulfidic bonds. The mechanical properties of the re-vulcanized rubber (like tensile strength, modulus, tear strength and elongation at break) were improved with increasing concentrations of de-vulcanizing agent, because the crosslink density increased. A decrease in scorch time and in optimum cure time and an increase in the state of cure were observed when vulcanized rubber was treated with high amounts of de-vulcanizing agent. The temperature of onset of degradation was also increased with increasing concentration of thio-acid. DMA analysis revealed that the storage modulus increased on re-vulcanization. From IR spectroscopy it was observed that oxidation of the main polymeric chains did not occur at the time of high temperature milling. Over 80% retention of the original mechanical properties (like tensile strength, modulus, tear strength and elongation at break) of the vulcanized natural rubber was achieved by this mechanochemical process.


2020 ◽  
Vol 36 (3) ◽  
pp. 285-294
Author(s):  
Ying Mao ◽  
Wen-Hwa Chen ◽  
Ming-Hisao Lee

ABSTRACTTo evaluate the thermal deformation induced by 3D Printing (Three Dimensional Printing) process, a novel meshless analysis procedure is established. To account for the heat transfer and solidification effects of each printing layer from liquid to solid phase transition, the layer temperature is measured by the implanted thermocouples. Based on the temperature variation measured, the printing layer temperature can be averaged and considered as uniform for thermal analysis. In addition, as observed by the deformation of the printed target through experiment, only linear thermal elastic analysis is performed.A rigorous algorithm for simulating the 3D Printing process is presented herein. Since the interpolation functions are no longer polynomials, a simple integration scheme using uniform integration points is applied to calculate the global stiffness matrix. Thus, the density and location of the integration points can be easily adjusted to fulfill the required accuracy. Further, for practical implementation, the simulation is also carried out by the concept of equivalent layer.Demonstrative cases of printing a rectangular PLA (Polylactic Acid) brick are tackled to prove the accuracy and efficiency of the proposed meshless analysis procedure. The effects of layer thickness, equivalent layer and slenderness ratio on the thermal deformation of the printed brick are also investigated.


Author(s):  
Laxmi Poudel ◽  
Chandler Blair ◽  
Jace McPherson ◽  
Zhenghui Sha ◽  
Wenchao Zhou

Abstract While three-dimensional (3D) printing has been making significant strides over the past decades, it still trails behind mainstream manufacturing due to its lack of scalability in both print size and print speed. Cooperative 3D printing (C3DP) is an emerging technology that holds the promise to mitigate both of these issues by having a swarm of printhead-carrying mobile robots working together to finish a single print job cooperatively. In our previous work, we have developed a chunk-based printing strategy to enable the cooperative 3D printing with two fused deposition modeling (FDM) mobile 3D printers, which allows each of them to print one chunk at a time without interfering with the other and the printed part. In this paper, we present a novel method in discretizing the continuous 3D printing process, where the desired part is discretized into chunks, resulting in multi-stage 3D printing process. In addition, the key contribution of this study is the first working scaling strategy for cooperative 3D printing based on simple heuristics, called scalable parallel arrays of robots for 3DP (SPAR3), which enables many mobile 3D printers to work together to reduce the total printing time for large prints. In order to evaluate the performance of the printing strategy, a framework is developed based on directed dependency tree (DDT), which provides a mathematical and graphical description of dependency relationships and sequence of printing tasks. The graph-based framework can be used to estimate the total print time for a given print strategy. Along with the time evaluation metric, the developed framework provides us with a mathematical representation of geometric constraints that are temporospatially dynamic and need to be satisfied in order to achieve collision-free printing for any C3DP strategy. The DDT-based evaluation framework is then used to evaluate the proposed SPAR3 strategy. The results validate the SPAR3 as a collision-free strategy that can significantly shorten the printing time (about 11 times faster with 16 robots for the demonstrated examples) in comparison with the traditional 3D printing with single printhead.


Healthcare ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 103 ◽  
Author(s):  
Wang ◽  
Chen ◽  
Lin

Three-dimensional (3D) printing has great potential for establishing a ubiquitous service in the medical industry. However, the planning, optimization, and control of a ubiquitous 3D printing network have not been sufficiently discussed. Therefore, this study established a collaborative and ubiquitous system for making dental parts using 3D printing. The collaborative and ubiquitous system split an order for the 3D printing facilities to fulfill the order collaboratively and forms a delivery plan to pick up the 3D objects. To optimize the performance of the two tasks, a mixed-integer linear programming (MILP) model and a mixed-integer quadratic programming (MIQP) model are proposed, respectively. In addition, slack information is derived and provided to each 3D printing facility so that it can determine the feasibility of resuming the same 3D printing process locally from the beginning without violating the optimality of the original printing and delivery plan. Further, more slack is gained by considering the chain effect between two successive 3D printing facilities. The effectiveness of the collaborative and ubiquitous system was validated using a regional experiment in Taichung City, Taiwan. Compared with two existing methods, the collaborative and ubiquitous 3D printing network reduced the manufacturing lead time by 45% on average. Furthermore, with the slack information, a 3D printing facility could make an independent decision about the feasibility of resuming the same 3D printing process locally from the beginning.


2014 ◽  
Vol 29 (S2) ◽  
pp. S42-S47 ◽  
Author(s):  
Werner Kaminsky ◽  
Trevor Snyder ◽  
Jennifer Stone-Sundberg ◽  
Peter Moeck

Ongoing software developments for creating three-dimensional (3D) printed crystallographic models seamlessly from Crystallographic Information Framework (CIF) data (*.cif files) are reported. Color versus monochrome printing is briefly discussed. Recommendations are made on the basis of our preliminary printing efforts. A brief outlook on new materials for 3D printing is given.


2011 ◽  
Vol 380 ◽  
pp. 290-293
Author(s):  
Bing Tao Wang ◽  
Ping Zhang ◽  
De Gao

In situ melt copolycondensation was proposed to prepare biodegradable copolyester nanocomposites based on degradable components poly(L-lactic acid) (PLA), rigid segments poly(butylene terephthalate) (PBT), and nanoparticles polyhedral oligomeric silsesquioxanes (POSS). The morphologies and dispersions of two POSS nanoparticles (POSS-NH2 and POSS-PEG) in the copolyester PLABT matrix and their effects on the mechanical properties were investigated. The results demonstrated that the morphologies and dispersions of POSS-NH2 and POSS-PEG showed quite different characteristics. POSS-PEG took better dispersion in the PLABT, while POSS-NH2 had poor dispersions and formed crystalline microaggregates. Due to the good dispersion and strong interfacial adhesion of POSS-PEG with the matrix, the tensile strength and Young’s modulus were greatly improved from 6.4 and 9.6 MPa for neat PLABT up to 11.2 and 70.7 MPa for PLABT/POSS-PEG nanocomposite. Moreover, the incorporation of POSS-PEG could impart macromolecular chains good flexibility and improve the mobility of the chains, so the the elongation at break of PLABT/POSS-PEG nanocomposite dramatically increased from 190 to 350 % compared with neat PLABT.


This experimental study demonstrates the consequences of orientation of fibers in fibre reinforced biocomposite materials (FRBC) and its impact on their mechanical behaviour. Various samples of FRBC were synthesized from coir rope using hand layup method and epoxy resin in which orientation of coir rope was varied at 0°, 45° and 90° respectively. Test results reveal enhancements in tensile strength while reduction in flexural rigidity for all the samples of prepared composite in comparison to samples of pure epoxy material. The mechanical behavior of FRBCs is sensitive to the orientation angle of coir fiber in the matrix. The results show improved tensile strength for FE-90 samples by about 28%, but the flexural rigidity declined by about 59% as compared to E-samples. The minimum decline in flexural rigidity is about 16% for FE-00 samples while tensile strength enhanced by about 11% approx. It is concluded that, FRBCs prepared from coir fibres with hand layup method, are light weight and possess improved strength therefore, they are suitable for structural and reinforcement purpose.


Sign in / Sign up

Export Citation Format

Share Document