scholarly journals Poly(vinyl alcohol)-Based Biofilms Plasticized with Polyols and Colored with Pigments Extracted from Tomato By-Products

Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 532 ◽  
Author(s):  
Laura Mitrea ◽  
Lavinia-Florina Călinoiu ◽  
Gheorghe-Adrian Martău ◽  
Katalin Szabo ◽  
Bernadette-Emoke Teleky ◽  
...  

In the current work the physicochemical features of poly(vinyl alcohol) (PVOH) biofilms, enriched with eco-friendly polyols and with carotenoid-rich extracts, were investigated. The polyols, such as glycerol (Gly), 1,3-propanediol (PDO), and 2,3-butanediol (BDO) were used as plasticizers and the tomato-based pigments (TP) as coloring agents. The outcomes showed that β-carotene was the major carotenoid in the TP (1.605 mg β-carotene/100 DW), which imprinted the orange color to the biofilms. The flow behavior indicated that with the increase of shear rate the viscosity of biofilm solutions also increased until 50 s−1, reaching values at 37 °C of approximately 9 ± 0.5 mPa·s for PVOH, and for PVOH+TP, 14 ± 0.5 mPa·s in combination with Gly, PDO, and BDO. The weight, thickness, and density of samples increased with the addition of polyols and TP. Biofilms with TP had lower transparency values compared with control biofilms (without vegetal pigments). The presence of BDO, especially, but also of PDO and glycerol in biofilms created strong bonds within the PVOH matrix by increasing their mechanical resistance. The novelty of the present approach relies on the replacement of synthetic colorants with natural pigments derived from agro-industrial by-products, and the use of a combination of biodegradable polymers and polyols, as an integrated solution for packaging application in the bioplastic industry.

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 141 ◽  
Author(s):  
Katalin Szabo ◽  
Bernadette-Emoke Teleky ◽  
Laura Mitrea ◽  
Lavinia-Florina Călinoiu ◽  
Gheorghe-Adrian Martău ◽  
...  

Active films were prepared from poly(vinyl alcohol) (PVA) blended with itaconic acid (Ia), and with chitosan (Ch), enriched with tomato processing by-products extract (TBE) in order to develop new bioactive formulations for food packaging. The effects of two biopolymers (Ch, Ia) and of the incorporated TBE—containing phenolic compounds and carotenoids—were studied regarding the physical and antimicrobial properties of films; in addition, their influence on the total phenolic content, viscosity, and flow behavior on the film-forming solutions was investigated. The results showed increased physical properties (diameter, thickness, density, weight) of the films containing the TBE versus their control. TBE and Ch conferred significant antimicrobial effects to PVA films toward all the tested microorganisms, whereas the best inhibition was registered against S. aureus and P. aeruginosa, with a minimum inhibitory concentration of <0.078 mg DW/mL. The Ia-PVA films also exhibited some antibacterial activity against P. aeruginosa (2.5 mg DW/mL). The total phenolic content of the film-forming solutions presented the highest values for the TBE and Ch-added PVA samples (0.208 mg gallic acid/100 mL film-forming solution). These results suggest that the PVA + Ch film containing TBE can be used for the development of intelligent and active food packaging materials.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2104
Author(s):  
Francesca Luzi ◽  
Elisa Pannucci ◽  
Mariangela Clemente ◽  
Edoardo Grande ◽  
Silvia Urciuoli ◽  
...  

Oxidative stability of food is one of the most important parameters affecting integrity and consequently nutritional properties of dietary constituents. Antioxidants are widely used to avoid deterioration during transformation, packaging, and storage of food. In this paper, novel poly (vinyl alcohol) (PVA)-based films were prepared by solvent casting method adding an hydroxytyrosol-enriched extract (HTyrE) or an oleuropein-enriched extract (OleE) in different percentages (5, 10 and 20% w/w) and a combination of both at 5% w/w. Both extracts were obtained from olive oil wastes and by-products using a sustainable process based on membrane technologies. Qualitative and quantitative analysis of each sample carried out by high performance liquid chromatography (HPLC) and nuclear resonance magnetic spectroscopy (NMR) proved that the main components were hydroxytyrosol (HTyr) and oleuropein (Ole), respectively, two well-known antioxidant bioactive compounds found in Olea europaea L. All novel formulations were characterized investigating their morphological, optical and antioxidant properties. The promising performances suggest a potential use in active food packaging to preserve oxidative-sensitive food products. Moreover, this research represents a valuable example of reuse and valorization of agro-industrial wastes and by-products according to the circular economy model.


2021 ◽  
pp. 088532822199226
Author(s):  
Patricia Hubner ◽  
Nilson Romeu Marcilio ◽  
Isabel Cristina Tessaro

The development of hydrogel films for biomedical applications is interesting due to their characteristics. Hydrogel films based on gelatin and poly(vinyl alcohol) (PVA) are developed and characterized using a rotatable central composite design. The optimized hydrogel film is obtained by the function desirability of the Statistica® software and is also characterized by swelling kinetics, oxygen permeability, adhesiveness, TGA, DSC, and XRD. The results of the experimental design show that gelatin and PVA concentrations have a significant influence on the response variables, and the exposure doses to UV light show no significant effect. The optimized hydrogel film is elastic, presents good mechanical resistance and swelling capacity in water and exudate solution, is permeable to oxygen, and is capable of adjusting itself and maintains contact close to the skin. In this way, considering all the properties evaluated, the optimized film has characteristics suitable for biomedical applications as wound dressings.


1986 ◽  
Vol 1 (6) ◽  
pp. 861-869 ◽  
Author(s):  
Paul D. Garrett ◽  
David T. Grubb

2019 ◽  
Vol 18 (1) ◽  
pp. 125-136 ◽  
Author(s):  
Luiza Jecu ◽  
Iuliana Raut ◽  
Elena Grosu ◽  
Mariana Calin ◽  
Violeta Purcar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document