scholarly journals Poly(ester imide)s Possessing Low Coefficients of Thermal Expansion and Low Water Absorption (V). Effects of Ester-linked Diamines with Different Lengths and Substituents

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 859 ◽  
Author(s):  
Masatoshi Hasegawa ◽  
Tomoaki Hishiki

A series of ester-linked diamines, with different lengths and substituents, was synthesized to obtain poly(ester imide)s (PEsIs) having improved properties. A substituent-free ester-linked diamine (AB-HQ) was poorly soluble in N-methyl-2-pyrrolidone at room temperature, which forced the need for polyaddition by adding tetracarboxylic dianhydride solid into a hot diamine solution. This procedure enabled the smooth progress of polymerization, however, accompanied by a significant decrease in the molecular weights of poly(amic acid)s (PAAs), particularly when using hydrolytically less stable pyromellitic dianhydride. On the other hand, the incorporation of various substituents (–CH3, –OCH3, and phenyl groups) to AB-HQ was highly effective in improving diamine solubility, which enabled the application of the simple polymerization process without the initial heating of the diamine solutions, and led to PAAs with sufficiently high molecular weights. The introduction of bulkier phenyl substituent tends to increase the coefficients of thermal expansion (CTE) of the PEsI films, in contrast to that of the small substituents (–CH3, –OCH3). The effects of ester-linked diamines, consisting of longitudinally further extended structures, were also investigated. However, this approach was unsuccessful due to the solubility problems of these diamines. Consequently, the CTE values of the PEsIs, obtained using longitudinally further extended diamines, were not as low as we had expected initially. The effects of substituent bulkiness on the target properties, and the dominant factors for water uptake (WA) and the coefficients of hygroscopic expansion (CHE), are also discussed in this study. The PEsI derived from methoxy-sustituted AB-HQ analog and 3,3′,4,4′-biphenyltetracarboxylic dianhydride achieved well-balanced properties, i.e., a very high Tg (424 °C), a very low CTE (5.6 ppm K−1), a low WA (0.41%), a very low CHE value (3.1 ppm/RH%), and sufficient ductility, although the 26 μm-thick film narrowly missed certification of the V-0 standard in the UL-94V test. This PEsI film also displayed a moderate εr (3.18) and a low tan δ (3.14 × 10−3) at 10 GHz under 50% RH and at 23 °C. Thus, this PEsI system is a promising candidate as a novel dielectric substrate material for use in the next generation of high-performance flexible printed circuit boards operating at higher frequencies (≥10 GHz).

e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 555-562 ◽  
Author(s):  
Pengchang Ma ◽  
Chuntao Dai ◽  
Hongbo Liu

AbstractIn order to match the fabrication process of flexible Copper-Indium-Gallium-Selenide (CIGS) solar cell, a series of polyimides (PIs) with high initial decomposition temperatures (Td) were prepared from 6,4′-diamino-2′-trifluoromethyl-2-phenylbenzimidazole (DATFPBI), p-phenylenediamine (p-PPD), and S-type biphenyl dianhydride (s-BPDA) using a sequential copolymerization, casting, and thermal imidization process. The physical properties of the PIs were found to be effectively modified by adjusting both the ratio of the rigid momomers and the thermal imidization process. With the introduction of DATFPBI, the polymers showed significant improvements in thermal stability, thermal expansion, moisture absorption and mechanical properties. PIPBId, one of the synthesized PI film, exhibited an excellent comprehensive performance: a glass transition temperature of 368°C, a tensile modulus of 6.8 GPa, a linar coefficient thermal expansion (CTE) of 16.8 ppm/K, and a moisture absorption of 1.42%. Furthermore, Td of this thin film was up to 524°C,which indicated that the PIPBId film is a competitive candidate as the flexible substrate for CIGS, Copper-Zinc-Tin-Sulphide (CZTS) solar cell and flexible printed circuit boards (FPCB) where high process temperature is necessary.


e-Polymers ◽  
2016 ◽  
Vol 16 (4) ◽  
pp. 295-302 ◽  
Author(s):  
Yonglin Lei ◽  
Yuanjie Shu ◽  
Jinhua Peng ◽  
Yongjian Tang ◽  
Jichuan Huo

AbstractA series of copolyimides were prepared by thermal imidization of poly(amic acid)s (PAAs) derived from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 2,3′,3,4′-biphenyltetracarboxylic dianhydride (a-BPDA), p-phenylenediamine (PDA) and 4,4′-oxydialinine (4,4′-ODA) commonly used for the production of commercial polyimides. The flexible copolyimide films were obtained from that the molar ratio of s-BPDA, a-BPDA, PDA and 4,4′-ODA was 9:1:8:2 (Co-PIs-3), 8:2:9:1 (Co-PIs-5) and 8:2:8:2 (Co-PIs-6). These obtained copolyimide films were characterized by Fourier transform-infrared spectroscopy(FT-IR), wide angle X-ray (WAXD), Thermogravimetric (TG), dynamic mechanical thermal analysis (DMA), thermomechanical analysis (TMA), field-emission scanning electron microscopy (FE-SEM) and mechanical properties measurement. The results showed that three copolyimides remained semi-crystalline and exhibited high glass transition temperature (Tg), high thermal stability, great ultimate tensile strength and low coefficient of thermal expansion (CTE). The Co-PIs-5 had lower crystallinity, lower CTE, greater elongation at break, higher Tg and thermal stability and the greater dense extent, compared with Co-PIs-3 and Co-PIs-6. Structure and property relations of the prepared polyimides were also briefly discussed. The results revealed that the copolymerization of s-BPDA/PDA with a small number of 4,4′-ODA/a-BPDA was a useful means for enhancing flexibility without sacrificing low CTE.


2017 ◽  
Vol 96 ◽  
pp. 393-402 ◽  
Author(s):  
Zhibo Cao ◽  
Xiaogang Zhao ◽  
Daming Wang ◽  
Chunhai Chen ◽  
Chunyan Qu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 850
Author(s):  
Donghyuk Kim ◽  
Byungkyu Ahn ◽  
Kihyun Kim ◽  
JongYeop Lee ◽  
Il Jin Kim ◽  
...  

Liquid butadiene rubber (LqBR) which used as a processing aid play a vital role in the manufacturing of high-performance tire tread compounds. However, the studies on the effect of molecular weight, microstructure, and functionalization of LqBR on the properties of compounds are still insufficient. In this study, non-functionalized and center-functionalized liquid butadiene rubbers (N-LqBR and C-LqBR modified with ethoxysilyl group, respectively) were synthesized with low vinyl content and different molecular weights using anionic polymerization. In addition, LqBR was added to the silica-filled SSBR compounds as an alternative to treated distillate aromatic extract (TDAE) oil, and the effect of molecular weight and functionalization on the properties of the silica-filled SSBR compound was examined. C-LqBR showed a low Payne effect and Mooney viscosity because of improved silica dispersion due to the ethoxysilyl functional group. Furthermore, C-LqBR showed an increased crosslink density, improved mechanical properties, and reduced organic matter extraction compared to the N-LqBR compound. LqBR reduced the glass transition temperature (Tg) of the compound significantly, thereby improving snow traction and abrasion resistance compared to TDAE oil. Furthermore, the energy loss characteristics revealed that the hysteresis loss attributable to the free chain ends of LqBR was dominant.


Sign in / Sign up

Export Citation Format

Share Document