scholarly journals The Reservoir Adaptability and Oil Displacement Mechanism of Polymer Microspheres

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 885 ◽  
Author(s):  
Jianbing Li ◽  
Liwei Niu ◽  
Wenxiang Wu ◽  
Meifeng Sun

Polymer microsphere profile control is a promising approach for the profile control of heterogeneous reservoirs. Matching between polymer microspheres and the reservoir pore throat is crucial for profile control. In this study, the range of the optimal matching factor Ra between polymer microspheres and core porosity was divided through core permeability limit experiments, and the dynamic migration laws and shut-off patterns of microspheres were studied using 9-m-long cores and microscopic models. The oil displacement effect and mechanism of microspheres were analyzed using three cores in parallel. The “injectability limit” and “in-depth migration limit” curves were divided by Ra into three zones: blockage (Ra < 1.09 ± 0.10), near-well profile control (1.09 ± 0.10 < Ra < 5.70 ± 0.64), and in-depth fluid diversion (Ra > 5.70 ± 0.64). During migration in porous media, the microspheres gradually enlarged in size and thus successively shut off in four forms: multi-microsphere bridging shut-off, few-microsphere bridging shut-off, single-microsphere shut-off, and elastic shut-off. Microspheres with a rational combination of sizes versus those with a single particle size further enhanced reservoir oil recovery under certain reservoir conditions. Through “temporary shut-off–breakthrough–temporary shut-off,” the polymer microspheres were able to change the fluid flow rate and streamlines, mobilize residual oils, and enhance the oil recovery rates.

2020 ◽  
Vol 213 ◽  
pp. 01025
Author(s):  
Shuai Hua ◽  
Yuan Li ◽  
Qinfeng Di

Foam flooding demonstrated the ability to solve the viscous fingering problem of gas flooding and increase the sweep efficiency in enhancing oil recovery. It is commonly used in development of heterogeneous reservoirs. While the characteristics of fluid migration in pores and between layers were still unclear. In this paper, Dynamic change of oil and water with different foam quality was tested during foam flooding by NMR method. Oil displacement effect of water flooding and foam flooding was compared. The results showed the foam quality affected the foam stability and profile control effect. Compared with water flooding, the foam could increase the recovery rate of the low-permeability layer, and the foam system with high stability had a high sweep efficiency and a high oil displacement efficiency in the heterogeneous cores.


2014 ◽  
Vol 541-542 ◽  
pp. 195-198 ◽  
Author(s):  
Kai Wang ◽  
Ji Chao Fang ◽  
Xiao Ming Wu

In this paper, the law of hydration expansion of polymer microsphere and the plugging rate of polymer microsphere under condition of different influencing factors such as hydration time, mass concentration, and permeability are studied. The applicable conditions are optimized as following: The optimum hydration time, mass concentration, and formation permeability through laboratory experiment is 5 days 3000 mg/L~4000 mg/L, permeability under 4 um2respectively. Finally, oil displacement experiment is carried out under laboratory conditions. The results show that the enhancement in oil recovery obtained in core flow experiment is about 7 %, which suggests that it has a wide application prospects in tertiary oil recovery.


Fuel ◽  
2019 ◽  
Vol 237 ◽  
pp. 1151-1160 ◽  
Author(s):  
Weijia Cao ◽  
Kun Xie ◽  
Xiangguo Lu ◽  
Yigang Liu ◽  
Yunbao Zhang

2021 ◽  
pp. 91-107
Author(s):  
E. A. Turnaeva ◽  
E. A. Sidorovskaya ◽  
D. S. Adakhovskij ◽  
E. V. Kikireva ◽  
N. Yu. Tret'yakov ◽  
...  

Enhanced oil recovery in mature fields can be implemented using chemical flooding with the addition of surfactants using surfactant-polymer (SP) or alkaline-surfactant-polymer (ASP) flooding. Chemical flooding design is implemented taking into account reservoir conditions and composition of reservoir fluids. The surfactant in the oil-displacing formulation allows changing the rock wettability, reducing the interfacial tension, increasing the capillary number, and forming an oil emulsion, which provides a significant increase in the efficiency of oil displacement. The article is devoted with a comprehensive study of the formed emulsion phase as a stage of laboratory selection of surfactant for SP or ASP composition. In this work, the influence of aqueous phase salinity level and the surfactant concentration in the displacing solution on the characteristics of the resulting emulsion was studied. It was shown that, according to the characteristics of the emulsion, it is possible to determine the area of optimal salinity and the range of surfactant concentrations that provide increased oil displacement. The data received show the possibility of predicting the area of effectiveness of ASP and SP formulations based on the characteristics of the resulting emulsion.


Author(s):  
B. A. Suleimanov ◽  
S. J. Rzayeva ◽  
U. T. Akhmedova

Microbial enhanced oil recovery is considered to be one of the most promising methods of stimulating formation, contributing to a higher level of oil production from long-term fields. The injection of bioreagents into a reservoir results in the creation of oil-displacing agents along with a significant amount of gases, mainly carbon dioxide. Earlier, the authors failed to study the preparation of self-gasified biosystems and the implementation of the subcritical region (SR) under reservoir conditions. Gasified systems in the subcritical phase have better oil-displacing properties than nongasified systems. In a heterogeneous porous medium, the filtration profile of gasified liquids in the SR should be more uniform than for a degassed liquid. Based on experimental studies, the superior efficiency of oil displacement by gasified biosystems compared with degassed ones has been demonstrated. The possibility of efficient use of gasified hybrid biopolymer systems has been shown.


Author(s):  
Fulin Wang ◽  
Tao Yang ◽  
Yunfei Zhao ◽  
Yanjun Fang ◽  
Fuli Wang ◽  
...  

Asphalt profile control is an effective method, which can further improve oil recovery of reservoir polymer flooded, it has a lot of advantages including high strength profile control, seal strata formation efficiency, low cost and no pollution, but there has not a perfect evaluation system for its development mode. The effect of different concentration, injection rate, radius of profile control, the timing of profile and segment combination way on the oil displacement effect of the asphalt profile control were researched using numerical simulation method on actual typical well area in Daqing oilfield, and the mechanism of asphalt profile control was studied in detail. According to the results of laboratory test, the largest Enhanced Oil Recovery (EOR) of asphalt was obtained at injection concentration 4000 mg/L, and the best combination was “high–low–high” concentration slug mode. According to the results of numerical simulation, the best concentration, injection rate, radius of profile control and injection timing were 4000 mg/L, 0.15 PV/a (Pore Volume [PV], m3), 1/2 of well spacing and 96% water cut in single slug of asphalt injection system, when the injection condition was multiple slug, the “high–low–high” slug combination mode was the best injection mode. These results could provide effective development basis for asphalt profile control after polymer flooding in thick oil layers.


2014 ◽  
Vol 694 ◽  
pp. 354-358 ◽  
Author(s):  
Ke Liang Wang ◽  
Xue Li ◽  
Shu Jie Sun ◽  
Jin Yu Li ◽  
Yuan Yuan ◽  
...  

The poor oil resistance of traditional foam system leads to gas channeling and low oil recovery in the process of foam flooding field trial. Aiming at this phenomenon, a new oil resistant and low tension foam system is proposed. Firstly, dodecyl hydroxypropyl phosphate betaine and fluorocarbon 101005 were selected as oil resistant foaming agents from several high performance foaming agents. Then, mixed the two agents with low tension betaine in certain proportions to form oil resistant and low tension foam system and compared oil displacement effect with single foam system, traditional foam system and single low tension system. Experimental results show that, foam performance of oil resistant and low tension foam system is the best in the presence of oil, and the foam flooding recovery reaches to 16.10%, which is much higher than that of single foam system, traditional foam system and single low tension system.


2013 ◽  
Vol 734-737 ◽  
pp. 1272-1275
Author(s):  
Ji Hong Zhang ◽  
Zhi Ming Zhang ◽  
Xi Ling Chen ◽  
Qing Bin He ◽  
Jin Feng Li

Nanometer microspheres injection is a new deep profile control technology. Nanometer microspheres could inflate with water, resulting in plugging step by step in reservoirs, which could improve the swept efficiency in the reservoir and enhance oil recovery. By using non-homogeneous rectangular core, oil displacement efficiency experiment was conducted for studying the influence of different injection methods on the effect of injection nanometer microspheres. The experimental result shows that, compared with development effect of single-slug injection or triple-slug injection, the one of double-slug injection is better. Nanometer microspheres can enhance oil recovery significantly in medium and low permeability reservoir.


2021 ◽  
Vol 21 (1) ◽  
pp. 28-35
Author(s):  
Stanislav A. Stanislav A. ◽  
◽  
Oleg A. Morozyuk ◽  
Konstantin S. Kosterin ◽  
Semyon P. Podoinitsyn ◽  
...  

As an option for enhancing oil recovery of a high-viscosity Permo-Carboniferous reservoir associated with the Usinskoye field, the use of technology based on technogenic carbon dioxide as an injection agent is considered. In the world practice, several fields are known as close in their parameters to the parameters of the Permo-Carboniferous reservoir, and in which CO2 injection was accepted as successful. Based on this, CO2 injection can potentially be applicable in the conditions of a Permo-Carboniferous reservoir. At present, as a result of the various development technologies implementation, reservoir zones are distinguished, characterized by different thermobaric properties. Depending on reservoir conditions, when displacing oil with gases, various modes of oil displacement can be realized. This article describes the results of studies carried out to study the effect of the concentration of carbon dioxide on the properties of high-viscosity oil in the Permo-Carboniferous Reservoir of the Usinskoye field, as well as the results of filtration experiments on slim models performed to assess the oil displacement regime under various temperature and pressure conditions of the Permo-Carboniferous Reservoir. The study of the influence of CO2 concentration on oil properties was carried out using the standard PVT research technique. The displacement mode was assessed using the slim-tube technique. Based on the performed experiments, it was established that an increase in the concentration of CO2 in high-viscosity oil led to a noticeable change in its properties; for the conditions of a Permo-Carboniferous Reservoir, the most probable mode of oil displacement by carbon dioxide was established. Difficulties associated with the preparation of the CO2-heavy oil system were described separately. Based on a literature review, it was shown that the rate of mixing of oil with carbon dioxide depended on certain conditions.


Author(s):  
Long Yu ◽  
Qian Sang ◽  
Mingzhe Dong

Reservoir heterogeneity is the main cause of high water production and low oil recovery in oilfields. Extreme heterogeneity results in a serious fingering phenomenon of the displacing fluid in high permeability channels. To enhance total oil recovery, the selective plugging of high permeability zones and the resulting improvement of sweep efficiency of the displacing fluids in low permeability areas are important. Recently, a Branched Preformed Particle Gel (B-PPG) was developed to improve reservoir heterogeneity and enhance oil recovery. In this work, conformance control performance and Enhanced Oil Recovery (EOR) ability of B-PPG in heterogeneous reservoirs were systematically investigated, using heterogeneous dual sandpack flooding experiments. The results show that B-PPG can effectively plug the high permeability sandpacks and cause displacing fluid to divert to the low permeability sandpacks. The water injection profile could be significantly improved by B-PPG treatment. B-PPG exhibits good performance in profile control when the high/low permeability ratio of the heterogeneous dual sandpacks is less than 7 and the injected B-PPG slug size is between 0.25 and 1.0 PV. The oil recovery increment enhanced by B-PPG after initial water flooding increases with the increase in temperature, sandpack heterogeneity and injected B-PPG slug size, and it decreases slightly with the increase of simulated formation brine salinity. Choosing an appropriate B-PPG concentration is important for B-PPG treatments in oilfield applications. B-PPG is an efficient flow diversion agent, it can significantly increase sweep efficiency of displacing fluid in low permeability areas, which is beneficial to enhanced oil recovery in heterogeneous reservoirs.


Sign in / Sign up

Export Citation Format

Share Document