scholarly journals Optimization of development mode of asphalt profile control based on numerical simulation and study of its mechanism

Author(s):  
Fulin Wang ◽  
Tao Yang ◽  
Yunfei Zhao ◽  
Yanjun Fang ◽  
Fuli Wang ◽  
...  

Asphalt profile control is an effective method, which can further improve oil recovery of reservoir polymer flooded, it has a lot of advantages including high strength profile control, seal strata formation efficiency, low cost and no pollution, but there has not a perfect evaluation system for its development mode. The effect of different concentration, injection rate, radius of profile control, the timing of profile and segment combination way on the oil displacement effect of the asphalt profile control were researched using numerical simulation method on actual typical well area in Daqing oilfield, and the mechanism of asphalt profile control was studied in detail. According to the results of laboratory test, the largest Enhanced Oil Recovery (EOR) of asphalt was obtained at injection concentration 4000 mg/L, and the best combination was “high–low–high” concentration slug mode. According to the results of numerical simulation, the best concentration, injection rate, radius of profile control and injection timing were 4000 mg/L, 0.15 PV/a (Pore Volume [PV], m3), 1/2 of well spacing and 96% water cut in single slug of asphalt injection system, when the injection condition was multiple slug, the “high–low–high” slug combination mode was the best injection mode. These results could provide effective development basis for asphalt profile control after polymer flooding in thick oil layers.

2016 ◽  
Vol 703 ◽  
pp. 251-255
Author(s):  
Peng Ye ◽  
Dong Zhang ◽  
Lian Bin Zhong ◽  
Guang Wang ◽  
Bin Fu ◽  
...  

This study gives the influence laws of abandoned channel, in-layer interlayer, sand body contact relationship on the development effect of the Alkaline Surfactant Polymer (ASP) flooding based on the data of the industry promotion block ( Pu I32、Pu I33 sedimentation), and give out corresponding adjustment strategy at the same time. The result shows that: The ‘abruptly abandoned’ channels have a bad connection with the main channel and possesses a far lower reservoir producing degree (16.1%) than the ‘gradually-abandoned’ channels (79.9%). The injection wells located upon the channel sand need high concentration inject fluid with lower injection rate to handle the polymer breakthrough; The injection wells located between the channels need lower concentration injection; The injection wells located upon the abandoned channels firstly need high concentration injection to achieve the profile control and then inject low concentration fluid to adjust low permeable sublayer; The production wells located upon abandoned channels need timely fracturing measures. By July 2014, water content of this area is 90.7%, oil recovery improved 18.08% and is expected to reach 22.0%. Similar the success experience we get from this area can guide the study of block geologic factors that affect development result and has important guiding significance to the implementation of pointed development adjustment.


2020 ◽  
Vol 213 ◽  
pp. 01025
Author(s):  
Shuai Hua ◽  
Yuan Li ◽  
Qinfeng Di

Foam flooding demonstrated the ability to solve the viscous fingering problem of gas flooding and increase the sweep efficiency in enhancing oil recovery. It is commonly used in development of heterogeneous reservoirs. While the characteristics of fluid migration in pores and between layers were still unclear. In this paper, Dynamic change of oil and water with different foam quality was tested during foam flooding by NMR method. Oil displacement effect of water flooding and foam flooding was compared. The results showed the foam quality affected the foam stability and profile control effect. Compared with water flooding, the foam could increase the recovery rate of the low-permeability layer, and the foam system with high stability had a high sweep efficiency and a high oil displacement efficiency in the heterogeneous cores.


2014 ◽  
Vol 881-883 ◽  
pp. 1691-1695
Author(s):  
Shao Ning Yuan ◽  
Guang Sheng Cao ◽  
Xiao Wei Duan

With the using of binary compound flooding in Jinzhou oil production plant of Liaohe Oilfield, problems like interwell interporosity flow and the unsatisfactory displacement effect occurs. The EOR method of combination of binary compound flooding and profile control technology has been adopted to solve these problems. The JSY crosslinking agent has been selected which has good compatibility with binary compound system by means of experiment of gel strength and gel time. And the formula system of binary compound flooding profile control which can improve the displacement effect of Jinzhou oil production plant has been formed after concentration optimization aim at improving oil recovery. The laboratory core plugging experiments show that the system of binary compound flooding profile control behaves better plugging effect and its plugging rate was greater than 94%. The parallel displacement experiments on low, medium and high permeability cores show that the oil recovery of binary compound flooding profile control system, which can improve the oil recovery more effectively, enhanced about 12% of oil recovery than binary compound flooding.


Author(s):  
Claudio Dongiovanni ◽  
Claudio Negri ◽  
Davide Pisoni

The sprays generated from three nozzles for automotive diesel engines have been compared. The nozzles were characterized by the same stationary flux and they were designed for the same engine, but with holes of different shape: cylindrical, conical and with different internal edge finishing. The nozzles have been mounted on an injection system test bench in order to characterize their hydraulic behaviour at practical test conditions for the engine on which the nozzles have to be installed. Then, the injector has been mounted on a test chamber and sprays were generated at the test conditions previously defined. Digital images of every spray plume were acquired at the same optical and injector operative conditions. An automatic digital image procedure was defined in order to evaluate the macroscopic spray characteristics: penetration and dispersion angle. This procedure was based on the Karhunen-Loeve decomposition in order to choose the appropriate threshold level for each image. The effect of the intensity threshold level on the image analysis was analysed in terms of macroscopic spray characteristics. The temporal evolutions of the sprays generated by the three nozzles were compared with one-another and the effects of practical injection timing on spray penetration were analysed. A dimensionless spray penetration correlation was developed in order to take into account the effects of the injection rate profiles on the penetration.


2015 ◽  
Vol 38 (1) ◽  
pp. 25-37
Author(s):  
Usman Usman

Mixing of waters from different sources may exacerbate the risk of formation damage and can impact on oil recovery. A case study is presented to demonstrate how to assess these risks. The study relies on laboratory-based work. Appropriate materials, methods, and procedures to assure the quality of test data and derive technically valid risks potential interpretations are discussed. The risks for potential plugging, scaling, permeability reduction, and oil recovery loss caused by introducing produced water are identified. Plugging is caused by bacterial growth and solid particles present in produced water. Bacterial growth is categorized as high. Solids Concentration is also high with its mean diameter larger than the non-damaging particle size. The CaCO3 scale is likely at reservoir temperature due to high concentration of HCO-3 in the produced water. Mixing of untreated produced water and treated freshwater caused signifi- cantly reduction in permeability. For the 25% PW and 75% FW mix, the permeability decreases by about 80% of its initial permeability. Adding 2000 ppm of biocide and fi ltered using 11 micron filter paper improved the quality of produced water. For the same mixing fraction, the permeability decreases only 47%. Analysis of pore throat size in conjunction with particle size of water samples suggests the need for using a fi lter less than 11 micron to avoid permeability decline imposed by solid particles. Waterflood experiments showed an ultimate recovery factor of 46.1% of original oil in place obtained from freshwater injection. Introducing 50% of produced water caused an oil recovery loss of 16% compared to freshwater injection alone. This lost oil recovery represents a quantitative effect of formation damage on oil production and may be valuable from the economic viewpoint.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 885 ◽  
Author(s):  
Jianbing Li ◽  
Liwei Niu ◽  
Wenxiang Wu ◽  
Meifeng Sun

Polymer microsphere profile control is a promising approach for the profile control of heterogeneous reservoirs. Matching between polymer microspheres and the reservoir pore throat is crucial for profile control. In this study, the range of the optimal matching factor Ra between polymer microspheres and core porosity was divided through core permeability limit experiments, and the dynamic migration laws and shut-off patterns of microspheres were studied using 9-m-long cores and microscopic models. The oil displacement effect and mechanism of microspheres were analyzed using three cores in parallel. The “injectability limit” and “in-depth migration limit” curves were divided by Ra into three zones: blockage (Ra < 1.09 ± 0.10), near-well profile control (1.09 ± 0.10 < Ra < 5.70 ± 0.64), and in-depth fluid diversion (Ra > 5.70 ± 0.64). During migration in porous media, the microspheres gradually enlarged in size and thus successively shut off in four forms: multi-microsphere bridging shut-off, few-microsphere bridging shut-off, single-microsphere shut-off, and elastic shut-off. Microspheres with a rational combination of sizes versus those with a single particle size further enhanced reservoir oil recovery under certain reservoir conditions. Through “temporary shut-off–breakthrough–temporary shut-off,” the polymer microspheres were able to change the fluid flow rate and streamlines, mobilize residual oils, and enhance the oil recovery rates.


2019 ◽  
Vol 1 (04) ◽  
pp. 64-74
Author(s):  
Denur Denur

System bahan bakar dikelompokan menjadi dua bagian. Bahagian tekanan tinggi dan bahagian tekan rendah. Tekanan tinggi diawali dari komponen supply pump, common rail, injector. Tekanan rendah diawali dari tangki bahan bakar, supply pump dan pipa kelebihan baban bakar. Ada dua buah filter yang digunakan,yaitu filter utama, filter water separator yang difungsikan pada system bahan bakar, untuk mengatasi kebocoran bahan bakar dan berbagai permasalahan yang ada maka sebuah flow damper dan limiter valve di pasang pada bahagian common rail, juga sebuah overflow valve di pasang pada bahagian supply pump.  Common rail system yang menggunakan sebuah type accumulator chamber yang disebut common rail yang berfungsi untuk menyimpan tekanan bahan bakar yang tinggi, dan injectors yang terdapat electronically controlled solenoid valves akan menyemprotkan tekanan bahan bakar yang tinggi  kedalam ruang bakar, Injection system (injection pressure, injection rate, dan injection timing) dikontrol oleh ECM, dan selanjutnya common rail system dapat mengontrol injection system secara tersendiri, bebas dari pengaruh kecepatan putaran mesin dan beban mesin. Pada kerja mesin yang mengalami kegagalan kerja maka akan terjadi penurunan tekanan, penurunan volume injeksi yang berakibat kurang tenaga mesin. Penanganan dari kerusakan yang ada dapat dilakukan perawatan secara pengambilan data secara menggunakan alat dan percobaan yang dilakukan.


2021 ◽  
Author(s):  
Rui Wang ◽  
Chengyuan Lv ◽  
Xuan Liu ◽  
Yongqiang Tang ◽  
Maolei Cui ◽  
...  

Abstract CO2 storage mechanisms in an EOR process in mature reservoirs are measured to determine three types of storage factors, which are introduced into compositional numerical simulation. The hybrid objective function coupli ng the oil recovery factor and the CO2 storage ratio is proposed to optimize the injection and production parameters in CO2 flooding. Three storage factors of the oil and water partition coefficient, the permeability change coefficient and the CO2 retention factor are measured in a laboratory, which is utilized to modify the grid properties of oil, brine, rock in compositional numerical simulation. The restart procedure is automatically adopted to consider these storage mechanisms in CO2 EOR. The bi-objective function of the oil recovery factor and the CO2 storage ratio is used to optimize the injection and production parameters for CO2 EOR, which concludes the design principles on CO2 EOR and storage. The oil and water partition coefficient defined as the ratio of the CO2 solubility in the oil phase and the brine phase is a constant for a specific reservoir condition. The permeability change coefficient caused by the mineral dissolution effect of carbonate water decreases slightly in the early stage and increases gradually with the long term injection. The CO2 retention factor that is induced by the relative permeability hysteresis decreases with the pressure and the permeability. These equivalent treated methods that modify fluids and rock in the real-time are inserted into the procedure of compositional numerical simulation to take into account the storage mechanisms in CO2 EOR. The results show that the effect of the storage mechanisms on EOR is evident. Furthermore, the bi - objective optimization indicates that the injection rate should be reduced largely in the medium and the later stages to control gas channeling as the EOR scenario is focused. And the bottom wellhole pressure of producers should be decreased to the lower level to maximize oil recovery. As the storage scenario is concentrated, the injection rate is required to be slightly controlled. As the producers are shut off, the injection rate must be increased significantly to maximize CO2 storage. The storage mechanisms in the CO2 EOR process have not been understood thoroughly. The methodology of numerical simulation coupling CO2 EOR and storage is not mature, which is still not taken into account in commercial software. The results above provide a way to optimize CO2 EOR and storage simultaneously, which is significant for the large scale storage after CO2 EOR in mature oilfield.


Author(s):  
A. Koto

The objective of this paper is to determine the optimum anaerobic-thermophilic bacterium injection (Microbial Enhanced Oil Recovery) parameters using commercial simulator from core flooding experiments. From the previous experiment in the laboratory, Petrotoga sp AR80 microbe and yeast extract has been injected into core sample. The result show that the experiment with the treated microbe flooding has produced more oil than the experiment that treated by brine flooding. Moreover, this microbe classified into anaerobic thermophilic bacterium due to its ability to live in 80 degC and without oxygen. So, to find the optimum parameter that affect this microbe, the simulation experiment has been conducted. The simulator that is used is CMG – STAR 2015.10. There are five scenarios that have been made to forecast the performance of microbial flooding. Each of this scenario focus on the injection rate and shut in periods. In terms of the result, the best scenario on this research can yield an oil recovery up to 55.7%.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 61-68
Author(s):  
Dong Zhang ◽  
Jian Guang Wei ◽  
Run Nan Zhou

AbstractActive-polymer attracted increasing interest as an enhancing oil recovery technology in oilfield development owing to the characteristics of polymer and surfactant. Different types of active functional groups, which grafted on the polymer branched chain, have different effects on the oil displacement performance of the active-polymers. In this article, the determination of molecular size and viscosity of active-polymers were characterized by Scatterer and Rheometer to detect the expanded swept volume ability. And the Leica microscope was used to evaluate the emulsifying property of the active-polymers, which confirmed the oil sweep efficiency. Results show that the Type I active-polymer have a greater molecular size and stronger viscosity, which is a profile control system for expanding the swept volume. The emulsification performance of Type III active-polymer is more stable, which is suitable for improving the oil cleaning efficiency. The results obtained in this paper reveal the application prospect of the active-polymer to enhance oil recovery in the development of oilfields.


Sign in / Sign up

Export Citation Format

Share Document