scholarly journals Phenol-Furfural Resin/Montmorillonite Based High-Pressure Green Composite from Renewable Feedstock (Saccharum munja) with Improved Thermo-Mechanical Properties

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1562 ◽  
Author(s):  
Muhammad Zeeshan Asad ◽  
Azhar Mahmood ◽  
Syed Tasweer Hussain Shah

This research endeavour aimed to explore the potential of a native, nonedible and low market value plant feedstock, i.e., Saccharum munja for green synthesis of woodware materials and improve its features by incorporating an economical blending material. A significant amount of furfural, i.e., 58%, was extracted from Saccharum munja through the modified acid digestion method. Extracted furfural was reacted with phenol to prepare phenol-furfural resin, an alternative to phenol-formaldehyde resin but with no harmful effects for humans. The synthesized resin was also blended with montmorillonite clay after modification via Dimethyl Sulfoxide (DMSO) treatment for improved thermo-mechanical properties. These resins and composites were characterized by XRD, SEM, and FTIR spectroscopy. Resultant resins and composites were further employed as a binding agent to make high-pressure composite from leftover plant residue by hot-press method. The resultant product was subjected to TGA analysis and furnished high value of degradation temperature (Tdeg), i.e., 607 °C. Prepared high-pressure composite samples were mechanically tested through compression tests by Tinius Olsen Testing Machine and hardness tests by Rockwell Hardness Tester. Its tensile strength value was 58.3 MPa while hardness value was found to be 64 RHB which was greater than mild copper with hardness value 48.9 RHB. Thus, green high-pressure composite material was successfully developed by employing Saccharum munja and montmorillonite clay while no toxic resin was used, nor was any residue left over.

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Hirofumi Niiya ◽  
Kenichi Oda ◽  
Daisuke Tsuji ◽  
Hiroaki Katsuragi

Abstract The formation of aggregates consisting of snow, water, and tephra has been reported in small-scale experiments on three-phase flows containing tephra, water, and snow, representing lahars triggered by snowmelt. Such aggregates reduce the mobility of mud flow. However, the formation mechanism of such aggregates under various conditions has not been investigated. To elucidate the formation conditions and mechanical properties of the aggregates, we performed mixing experiments with materials on a rotating table and compression tests on the resulting aggregates with a universal testing machine in a low-temperature room at $$0\,^{\circ }\text {C}$$ 0 ∘ C . From experiments with varying component ratios of the mixture and tephra diameter, the following results were obtained: (i) the aggregate grew rapidly and reached maturity after a mixing time of 5 min; (ii) the mass of aggregates increased with snow concentration, exhibiting an approximately linear relationship; (iii) single aggregates with large mass formed at lower and higher tephra concentrations, whereas multiple aggregates with smaller mass were observed at intermediate concentrations; (iv) the shape of the aggregate satisfied the similarity law for an ellipsoid; (v) the compressive mechanical behavior could be modeled by an empirical nonlinear model. The obtained mechanical properties of the aggregates were independent of the experimental conditions; (vi) scaling analysis based on the Reynolds number and the strength of the aggregates showed that the aggregates cannot form in ice-slurry lahars. Our findings suggest that low-speed lahars containing snow and ice are likely to generate aggregates, but snow and ice in the ice-slurry lahars are dispersed without such aggregates.


2011 ◽  
Vol 217-218 ◽  
pp. 490-494
Author(s):  
Gai Yun Li ◽  
Te Fu Qin

The waste brown-rotted wood was liquefied in phenol with phosphoric acid as a catalyst and the resulting liquefied products were condensed with formaldehyde to yield novolak liquefied wood-based phenol formaldehyde resin (LWF). The results showed that brown-rotted wood could be almost completely liquefied within 0.5 h at phenol to wood (P/W) ratio 2. An increase in P/W ratio from 2 to 3 slightly improved the flow property of LWF, but accompanied by decreasing the product yield from approximately 140 to 120 %. The increase of liquefaction time from 30 min to 60 min did not have a significant influence on the resulting LWF. The thermofluidity of LWF were compared to that of the commercial novolak PF resin, and could be used to make moldings with similar thermal property and mechanical properties to those obtained from the conventional novolak PF resin.


2020 ◽  
Vol 57 (1) ◽  
pp. 28-36
Author(s):  
Vasiliy Cherkasov ◽  
Yuiy Yurkin ◽  
Valeriy Avdonin ◽  
Dmitriy Suntsov

It is actual now to work out new radiation protecting sheeting on the basis of non-curing polymeric composition which possess self-adhesion properties, are easily mounted and dismantled and provide high tightness and low permeability. Mechanical properties of non-curing composites consisting of ethylene propylene diene monomer (EPDM), industrial oil (IO), alkyl phenol-formaldehyde resin (PF) with addition of barite (52 %) to the total material volume were investigated in this article. The aim of investigation is to find optimal content of the above mentioned components at which it would be possible to get the following properties: composite would be sticky enough (peel strength not less than 4 N/cm); character of a separation would be cohesive (on a material) and thus there would be no migration of softener and satisfactory resistance of fluidity. The results showed that PF addition till 20 % in the system EPDM/PF leads to the increasing of adhesive strength, in this case optimal oil concentration in the system EPDM/PF/IO is in the interval from 45 till 55 %. New self-adhesion lead-free material, exhibited higher X-ray-shielding properties, is also received in the result of investigation.


Author(s):  
D. A. Brazhnik ◽  
G. D. Semchenko ◽  
G. N. Shabanova ◽  
E. E. Starolat ◽  
I. N. Rozhko ◽  
...  

The possibilities of improving the physico-mechanical properties of periclase-carbon materials by modifying the phenol-formaldehyde resin (PFR) with organoinorganic complexes are described. The composition of the modifying additives, the phase composition of the materials after the PFR hardening are given, the influence of modifiers on the formation of the structure of materials is established. It is shown that the introduction of ethyl silicate or hydrolyzed ethyl silicate into liquid PFR during preparation of the charge contributes to the formation of SiC in the phase composition. The conclusion is made about the rationality of the introduction of ethyl silicate in an amount of from 0,66 to 1 wt. % and the prospects of introducing nickel oxalate into a liquid PFR together with ammonium citrate to increase the compressive strength of periclase-carbon materials up to 60 MPa. Ill. 7. Ref. 9.


Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 84 ◽  
Author(s):  
Susanne Bollmus ◽  
Cara Beeretz ◽  
Holger Militz

This study deals with the influence of chemical modification on elasto-mechanical properties of Scots pine (Pinus sylvestris L.). The elasto-mechanical properties examined were impact bending strength, determined by impact bending test; tensile strength; and work to maximum load in traction, determined by tensile tests. The modification agents used were one melamine-formaldehyde resin (MF), one low molecular weight phenol-formaldehyde resin, one higher molecular weight phenol-formaldehyde resin, and a dimethylol dihydroxyethyleneurea (DMDHEU). Special attention was paid to the influence of the solution concentration (0.5%, 5%, and 20%). With an increase in the concentration of each modification agent, the elasto-mechanical properties decreased as compared to the control specimens. Especially impact bending strength decreased greatly by modifications with the 0.5% solutions of each agent (by 37% to 47%). Modification with DMDHEU resulted in the highest overall reduction of the elasto-mechanical properties examined (up to 81% in work to maximum load in traction at 20% solution concentration). The results indicate that embrittlement is not primarily related to the degree of modification depended on used solution concentration. It is therefore assumed that molecular size and the resulting ability to penetrate into the cell wall could be crucial. The results show that, in the application of chemically modified wood, impact and tensile loads should be avoided even after treatment with low concentrations.


2018 ◽  
Vol 24 (2) ◽  
Author(s):  
Thiago Souza da Rosa ◽  
Rosilani Trianoski ◽  
Setsuo Iwakiri ◽  
Ghislaine Miranda Bonduelle ◽  
Claudiney Do Couto Guimarães

This study aimed to determine the influence of specific gravity on properties of oriented strand boards produced with five Eucalyptus species and get linear models between the properties and the densification of the panels. The species studied were: Eucalyptus benthamii, E. dunni, E. grandis, E. saligna, E. urograndis and the mixture between them. The panels were produced with phenol formaldehyde resin and nominal densities of 0,65 g/cm³ and 0,75 g/cm³. The water absorption has an inverse relationship to the density of the panel. The relation between mechanical properties and specific gravity of the panel is directly proportional. The panels produced with the Eucalyptus species showed better properties than those produced with control species (Pinus taeda), except for tensile perpendicular. By means of linear models obtained in this study conditions for each species, it can estimate the specific gravity to produce oriented strand board panels that adequate the standard requirements.


Sign in / Sign up

Export Citation Format

Share Document