scholarly journals Study of Shape Memory and Tensile Property of 3D Printed Sinusoidal Sample/Nylon Composite Focused on Various Thicknesses and Shape Memory Cycles

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1600 ◽  
Author(s):  
Shahbaj Kabir ◽  
Sunhee Lee

This study evaluated the shape memory and tensile property of 3D-printed sinusoidal sample/nylon composite for various thickness and cycles. Sinusoidal pattern of five thicknesses: 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm were 3D-printed on nylon fabric by the fused deposition modeling (FDM) 3D printer using shape memory thermoplastic polyurethane (SMTPU). Afterward, shape memory and tensile property was investigated up to 50 shape memory cycles. The study found that 3D-printed sinusoidal sample/nylon composite had a 100% shape recovery ratio for various thicknesses up to 50 cycles. The average shape recovery rate gradually decreased from 3.0°/s to 0.7°/s whereas the response time gradually increased with the increase of a 3D-printed pattern thickness. The stress and initial modulus gradually increased with the increase of the cycle’s number. Thus, the shape memory property had a similar tendency for various cycles whereas the tensile property gradually increased with the increase of the cycle number. Moreover, this study demonstrated that this 3D-printed sinusoidal sample/nylon composite can go through more than 50 cycles without losing its tensile or shape memory property. This 3D-printed sinusoidal sample/nylon composite has vast potential as smart, reinforced, and protective clothing that requires complex three-dimensional shapes.

2016 ◽  
Vol 848 ◽  
pp. 132-139
Author(s):  
Yue Ting Li ◽  
Hui Qin Lian ◽  
Yan Ou Hu ◽  
Lei Zu ◽  
Xiu Guo Cui ◽  
...  

Liquid crystalline polyurethanes (LCPU) were prepared from 4,4’-methylenediphenyl diisocyanate (MDI), 1,6-hexanediol (HDO), 2,2-dimethylol propionic acid (DMPA) and polytetramethylene ether glycol (PTMG). The experiments synthesized three liquid crystalline polyurethane films with different soft/hard segment ratio. Chemical and structural characterization of the polyurethanes were investigated by Fourier transform infrared, X-ray diffraction, thermogravimetric analysis, differential scanning calorimeter and polarized microscopy respectively. Swelling rate and shape memory property were tested. The results indicated that the polyurethane with 62% soft segment and large group of carboxyl displayed excellent swelling and shape memory properties, and the shape recovery rate reached 100%. It was found that the crystallinity, thermal stability decreased and the temperature flexibility, water absorption and shape recovery rate increased with the increase of polytetramethylene ether glycol.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1275 ◽  
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60–100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.


2020 ◽  
Vol 90 (21-22) ◽  
pp. 2399-2410 ◽  
Author(s):  
Shahbaj Kabir ◽  
Hyelim Kim ◽  
Sunhee Lee

This study has investigated the physical properties of 3D-printable shape memory thermoplastic polyurethane (SMTPU) filament and its 3D-printed sinusoidal pattern obtained by fused deposition modeling (FDM) technology. To investigate 3D filaments, thermoplastic polyurethane (TPU) and SMTPU filament were examined by conducting infrared spectroscopy, x-ray diffraction (XRD), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and a tensile test. Then, to examine the 3D-printed sinusoidal samples, a sinusoidal pattern was developed and 3D-printed. Those samples went through a three-step heating process: (a) untreated state; (b) 5 min heating at 70°C, cooling for 30 min at room temperature; and (c) a repeat of step 2. The results obtained by the three different heating processes of the 3D-printed sinusoidal samples were examined by XRD, DMTA, DSC and the tensile test to obtain the effect of heating or annealing on the structural and mechanical properties. The results show significant changes in structure, crystallinity and thermal and mechanical properties of SMTPU 3D-printed samples due to the heating steps. XRD showed the increase in crystallinity with heating. In DMTA, storage modulus, loss modulus and the tan σ peak position also changed for various heating steps. The DSC result showed that the Tg for different steps of the SMTPU 3D-printed sample remained almost the same at around 51°C. The tensile property of the TPU 3D-printed sinusoidal sample decreased in terms of both load and elongation with increased heating processes, while for the SMTPU 3D-printed sinusoidal sample, the load decreased but elongation increased about 2.5 times.


2017 ◽  
Vol 38 (23) ◽  
pp. 1700450 ◽  
Author(s):  
Wenkai Liu ◽  
Yun Zhao ◽  
Rong Wang ◽  
Jiehua Li ◽  
Jianshu Li ◽  
...  

2018 ◽  
Vol 51 (7-8) ◽  
pp. 626-643
Author(s):  
Chengliang Li ◽  
Xingxing Ji ◽  
Yang Lyu ◽  
Xinyan Shi

In this work, a damping material was successfully prepared by blending acrylic rubber (ACM) and polylactide (PLA) with sulfur and soap salt as the curing agents. A phenol-formaldehyde (PF) resin was used as a modifier. The effects of PF on the mechanical properties, damping properties, compatibility and shape memory properties of the blends were studied. The compatibility and damping properties were characterized by dynamic mechanical analysis, Fourier transform infrared spectroscope and microstructure analysis. The shape memory properties were examined by thermal mechanical analyser. The results revealed that the tensile strength of the blends was decreased and the toughness was increased with the increase of PF loadings. The introduction of PF improved the compatibility between PLA and ACM, which was deduced from the fact that the glass transition temperature of ACM was increased and the two loss factor peaks became closer. It was also found that the loss factor peak became higher and the effective damping temperature range became wider due to the formation of hydrogen bonding, implying that the damping properties of ACM/PLA blends were significantly improved. The ACM/PLA blends exhibited good dual-shape memory effect and its shape recovery ratio was increased by introduction of PF and raising the trigger temperature. The blends also exhibited good triple-shape memory property, which was dramatically improved by the introduction of PF. The mechanisms for the enhanced shape memory effects were then analysed.


2018 ◽  
Vol 56 (19) ◽  
pp. 1281-1286 ◽  
Author(s):  
Yan Jie Wang ◽  
Chen Yu Li ◽  
Zhi Jian Wang ◽  
Yiping Zhao ◽  
Li Chen ◽  
...  

2018 ◽  
Vol 192 ◽  
pp. 507-515 ◽  
Author(s):  
Yongtao Yao ◽  
Yun Luo ◽  
Haibao Lu ◽  
Bing Wang

2020 ◽  
Vol 26 (9) ◽  
pp. 1593-1602
Author(s):  
Jorge Villacres ◽  
David Nobes ◽  
Cagri Ayranci

Purpose The purpose of this paper is to study the shape memory properties of SMP samples produced through a MEAM process. Fused deposition modeling or, as it will be referred to in this paper, material extrusion additive manufacturing (MEAM) is a technique in which polymeric materials are extruded though a nozzle creating parts via accumulation and joining of different layers. These layers are fused together to build three-dimensional objects. Shape memory polymers (SMP) are stimulus responsive materials, which have the ability to recover their pre-programmed form after being exposed to a large strain. To induce its shape memory recovery movement, an external stimulus such as heat needs to be applied. Design/methodology/approach This project investigates and characterizes the influence of print orientation and infill percentage on shape recovery properties. The analyzed shape recovery properties are shape recovery force, shape recovery speed and time elapsed before activation. To determine whether the analyzed factors produce a significant variation on shape recovery properties, t-tests were performed with a 95% confidence factor between each analyzed level. Findings Results proved that print angle and infill percentage do have a significant impact on recovery properties of the manufactured specimens. Originality/value The manufacturing of SMP objects through a MEAM process has a vast potential for different applications; however, the shape recovery properties of these objects need to be analyzed before any practical use can be developed. These have not been studied as a function of print parameters, which is the focus of this study.


Sign in / Sign up

Export Citation Format

Share Document