scholarly journals Conductivity of Insulating Diblock Copolymer System Filled with Conductive Particles Having Different Affinities for Dissimilar Copolymer Blocks

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1659
Author(s):  
A.I. Chervanyov

We investigate the electrical response of the insulating diblock copolymer system (DBC) filled with conductive spherical fillers depending on the affinities of these fillers for copolymer blocks and the interaction between fillers. We demonstrate that the contrast (difference) between the affinities of the fillers for dissimilar copolymer blocks is a decisive factor that determines the distribution of these fillers in the DBC system. The distribution of filler particles, in turn, is found to be directly related to the electrical response of the DBC-particle composite. In particular, increasing the affinity contrast above a certain threshold value results in the insulator-conductor transition. This transition is found to be caused by the preferential localization of the fillers in the microphases of the DBC system having larger affinity for these fillers. The effect of the interaction between fillers is found to be secondary to the described effect of the affinity contrast that dominates in determining the distribution of fillers in the composite. This effect of the inter-particle interactions is shown to be significant only when the affinity contrast and filler volume fraction are sufficiently large.

Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
Ali Zamani ◽  
F. Handan Tezel ◽  
Jules Thibault

Membrane-based processes are considered a promising separation method for many chemical and environmental applications such as pervaporation and gas separation. Numerous polymeric membranes have been used for these processes due to their good transport properties, ease of fabrication, and relatively low fabrication cost per unit membrane area. However, these types of membranes are suffering from the trade-off between permeability and selectivity. Mixed-matrix membranes, comprising a filler phase embedded into a polymer matrix, have emerged in an attempt to partly overcome some of the limitations of conventional polymer and inorganic membranes. Among them, membranes incorporating tubular fillers are new nanomaterials having the potential to transcend Robeson’s upper bound. Aligning nanotubes in the host polymer matrix in the permeation direction could lead to a significant improvement in membrane permeability. However, although much effort has been devoted to experimentally evaluating nanotube mixed-matrix membranes, their modelling is mostly based on early theories for mass transport in composite membranes. In this study, the effective permeability of mixed-matrix membranes with tubular fillers was estimated from the steady-state concentration profile within the membrane, calculated by solving the Fick diffusion equation numerically. Using this approach, the effects of various structural parameters, including the tubular filler volume fraction, orientation, length-to-diameter aspect ratio, and permeability ratio were assessed. Enhanced relative permeability was obtained with vertically aligned nanotubes. The relative permeability increased with the filler-polymer permeability ratio, filler volume fraction, and the length-to-diameter aspect ratio. For water-butanol separation, mixed-matrix membranes using polydimethylsiloxane with nanotubes did not lead to performance enhancement in terms of permeability and selectivity. The results were then compared with analytical prediction models such as the Maxwell, Hamilton-Crosser and Kang-Jones-Nair (KJN) models. Overall, this work presents a useful tool for understanding and designing mixed-matrix membranes with tubular fillers.


2018 ◽  
Vol 7 (12) ◽  
pp. 1400-1407 ◽  
Author(s):  
Nadia M. Krook ◽  
Jamie Ford ◽  
Manuel Maréchal ◽  
Patrice Rannou ◽  
Jeffrey S. Meth ◽  
...  

1989 ◽  
Vol 171 ◽  
Author(s):  
Karen I. Winey ◽  
Edwin L. Thomas

ABSTRACTWe report the observation of the ordered bicontinuous double diamond (OBDD) structure in binary blends of poly(styrene-isoprene) diblock copolymer and homopolystyrene. The overall polystyrene volume fraction range is 64 - 67 PSvol% for the OBDD structure in binary blends of a lamellar diblock (SI 27/22) and a homopolymer (14.0 hPS). This composition range is approximately within the polystyrene volume fraction range established for pure diblock copolymers in the strong segregation regime having the OBDD structure. Ordered lamellae are observed at approximately 65 PSvol% when the homopolystyrene molecular weight is greater than the molecular weight of the polystyrene block of the copolymer. This observation is discussed in terms of the decreased degree of mixing between the homopolymer and the corresponding block and the resultant effect on the interfacial curvature.


2021 ◽  
Author(s):  
Hussein Zbib

A coupled computational fluid dynamics (CFD) and discrete element method (DEM) model was developed to analyze the fluid-particle and particle-particle interactions in a 3D liquid-solid fluidized bed (LSFB). The CFD-DEM model was validated using the Electrical Resistance Tomography (ERT) experimental method. ERT was employed to measure the bed-averaged particle volume fraction (BPVF) of 0.002 m glass beads fluidized with water for various particle numbers and flow rates. It was found that simulations employing the combination of the Gidaspow drag model with pressure gradient and virtual mass forces provided the least percentage error between experiments and simulations. It was also found that contact parameters must be calibrated to account for the particles being wet. The difference between simulations and experiments was 4.74%. The CFD-DEM model was also employed alongside stability analysis to investigate the hydrodynamic behavior within the LSFB and the intermediate flow regime for all cases studied.


2020 ◽  
Vol 4 (3) ◽  
pp. 30
Author(s):  
Wei C. Lin ◽  
Huan J. Keh

The diffusiophoresis in a suspension of charged soft particles in electrolyte solution is analyzed. Each soft particle is composed of a hard core of radius r0 and surface charge density σ and an adsorbed fluid-penetrable porous shell of thickness a−r0 and fixed charge density Q. The effect of particle interactions is considered by using a unit cell model. The ionic concentration, electric potential, and fluid velocity distributions in a unit cell are solved as power expansions in σ and Q, and an explicit formula for the diffusiophoretic velocity of the soft particle is derived from a balance between the hydrodynamic and electrostatic forces exerted on it. This formula is correct to the second orders of σ and Q and valid for arbitrary values of κa, λa, r0/a, and the particle volume fraction of the suspension, where κ is the Debye screening parameter and λ is the reciprocal of a length featuring the flow penetration into the porous shell. The effects of the physical characteristics and particle interactions on the diffusiophoresis (including electrophoresis and chemiphoresis) in a suspension of charged soft particles, which become those of hard particles and porous particles in the limits r0=a and r0=0, respectively, are significant and complicated.


2020 ◽  
Vol 74 (6) ◽  
pp. 655-660
Author(s):  
Sebastián Tognana ◽  
Cristian D'Angelo ◽  
Walter Salgueiro ◽  
Susana Montecinos

A laser-induced breakdown spectroscopy (LIBS) technique was used to evaluate the filler content in particulate epoxy–copper composites. A potential application for a direct and fast measurement of the filler in composites through the LIBS results is suggested using calibrated samples. The methodology used in this work makes possible the incorporation of LIBS as a quantitative technique for the study of particle metal-filled epoxy composites, providing a method to obtain a direct estimation of the filler volume fraction.


2013 ◽  
Vol 86 (2) ◽  
pp. 218-232 ◽  
Author(s):  
Y. Fukahori ◽  
A. A. Hon ◽  
V. Jha ◽  
J. J. C. Busfield

ABSTRACT The modulus increase in rubbers filled with solid particles is investigated in detail here using an approach known widely as the Guth–Gold equation. The Guth–Gold equation for the modulus increase at small strains was reexamined using six different species of carbon black (Printex, super abrasion furnace, intermediate SAF, high abrasion furnace, fine thermal, and medium thermal carbon blacks) together with model experiments using steel rods and carbon nanotubes. The Guth–Gold equation is only applicable to such systems where the mutual interaction between particles is very weak and thus they behave independently of each other. In real carbon black–filled rubbers, however, carbon particles or aggregates are connected to each other to form network structures, which can even conduct electricity when the filler volume fraction exceeds the percolation threshold. In the real systems, the modulus increase due to the rigid filler deviates from the Guth–Gold equation even at a small volume fraction of the filler of 0.05–0.1, the deviation being significantly greater at higher volume fractions. The authors propose a modified Guth–Gold equation for carbon black–filled rubbers by adding a third power of the volume fraction of the blacks to the equation, which shows a good agreement with the experimental modulus increase (G/G0) for six species of carbon black–filled rubbers, where G and G0 are the modulus of the filled and unfilled rubbers, respectively; ϕeff is the effective volume fraction; and S is the Brunauer, Emmett, Teller surface area of the blacks. The modified Guth–Gold equation indicates that the specific surface volume ()3 closely relates to the bound rubber surrounding the carbon particles, and therefore this governs the reinforcing structures and the level of the reinforcement in carbon black–filled rubbers.


PAMM ◽  
2004 ◽  
Vol 4 (1) ◽  
pp. 223-224
Author(s):  
Thomas Kletschkowski ◽  
Uwe Schomburg ◽  
Albrecht Betram

Sign in / Sign up

Export Citation Format

Share Document