scholarly journals Natural 3D-Printed Bioinks for Skin Regeneration and Wound Healing: A Systematic Review

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1782 ◽  
Author(s):  
Ali Smandri ◽  
Abid Nordin ◽  
Ng Min Hwei ◽  
Kok-Yong Chin ◽  
Izhar Abd Aziz ◽  
...  

Three-dimensional bioprinting has rapidly paralleled many biomedical applications and assisted in advancing the printing of complex human organs for a better therapeutic practice. The objective of this systematic review is to highlight evidence from the existing studies and evaluate the effectiveness of using natural-based bioinks in skin regeneration and wound healing. A comprehensive search of all relevant original articles was performed based on prespecified eligibility criteria. The search was carried out using PubMed, Web of Science, Scopus, Medline Ovid, and ScienceDirect. Eighteen articles fulfilled the inclusion and exclusion criteria. The animal studies included a total of 151 animals with wound defects. A variety of natural bioinks and skin living cells were implanted in vitro to give insight into the technique through different assessments and findings. Collagen and gelatin hydrogels were most commonly used as bioinks. The follow-up period ranged between one day and six weeks. The majority of animal studies reported that full wound closure was achieved after 2–4 weeks. The results of both in vitro cell culture and in vivo animal studies showed the positive impact of natural bioinks in promoting wound healing. Future research should be focused more on direct the bioprinting of skin wound treatments on animal models to open doors for human clinical trials.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
G. C. Santin ◽  
D. S. B. Oliveira ◽  
R. Galo ◽  
M. C. Borsatto ◽  
S. A. M. Corona

Background. The aim of this study was to perform a systematic review of the literature on the efficacy of antimicrobial photodynamic therapy (PDTa) on cariogenic dental biofilm.Types of Studies Reviewed. Studiesin vivo,in vitro, andin situwere included. Articles that did not address PDTa, those that did not involve cariogenic biofilm, those that used microorganisms in the plankton phase, and reviews were excluded. Data extraction and quality assessments were performed independently by two raters using a scale.Results. Two hundred forty articles were retrieved; only seventeen of them met the eligibility criteria and were analyzed in the present review. Considerable variability was found regarding the methodologies and application protocols for antimicrobial PDTa. Two articles reported unfavorable results.Practical Implications. The present systematic review does not allow drawing any concrete conclusions regarding the efficacy of antimicrobial PDTa, although this method seems to be a promising option.


Author(s):  
Hajar ZIAEI HEZARJARIBI ◽  
Najmeh NADEALI ◽  
Mahdi FAKHAR ◽  
Masoud SOOSARAEI

Background: Trichomoniasis, due to Trichomonas vaginalis, is one of the most common sexually transmitted parasitic diseases in the world such as Iran. This systematic review aimed to explore the studies evaluating the medicinal herbs with anti- T. vaginalis activity which used in Iran. Methods: Articles published in 4 Persian and 4 English databases were obtained between 2000 and 2015 including Google Scholar, PubMed, Science Direct, Scopus, Magiran, Barakatkns (formerly IranMedex), Elm net, and SID (Scientific Information Database). Studies out of Iran, studies on animal models and articles on other parasite species than T. vaginalis were excluded from this review. Results: Twenty-one articles including in vitro experiments, met our eligibility criteria. Thoroughly, 26 types of plants were examined against T. vaginalis. Medicinal herbs such as Artemisia, Zataria multiflora, and Lavandula angustifolia are remarkably effective on T. vaginalis. As such, use of other parts of these plants in different concentrations and timelines is recommended for future in vivo studies. Conclusion: The present systematic review provides comprehensive and useful information about Iranian medicinal plants with anti-T. vaginalis activity, which would be examined in the future experimental and clinical trials and herbal combination therapy.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1153
Author(s):  
Verena Schneider ◽  
Daniel Kruse ◽  
Ives Bernardelli de Mattos ◽  
Saskia Zöphel ◽  
Kendra-Kathrin Tiltmann ◽  
...  

Burns affect millions every year and a model to mimic the pathophysiology of such injuries in detail is required to better understand regeneration. The current gold standard for studying burn wounds are animal models, which are under criticism due to ethical considerations and a limited predictiveness. Here, we present a three-dimensional burn model, based on an open-source model, to monitor wound healing on the epidermal level. Skin equivalents were burned, using a preheated metal cylinder. The healing process was monitored regarding histomorphology, metabolic changes, inflammatory response and reepithelialization for 14 days. During this time, the wound size decreased from 25% to 5% of the model area and the inflammatory response (IL-1β, IL-6 and IL-8) showed a comparable course to wounding and healing in vivo. Additionally, the topical application of 5% dexpanthenol enhanced tissue morphology and the number of proliferative keratinocytes in the newly formed epidermis, but did not influence the overall reepithelialization rate. In summary, the model showed a comparable healing process to in vivo, and thus, offers the opportunity to better understand the physiology of thermal burn wound healing on the keratinocyte level.


2017 ◽  
Vol 376 ◽  
pp. 12-28 ◽  
Author(s):  
Sanda Mihaela Popescu ◽  
Horia Octavian Manolea ◽  
Oana Andreea Diaconu ◽  
Veronica Mercuţ ◽  
Monica Scrieciu ◽  
...  

Zirconia is a metal used in dental implantology. Its biocompatibility was studied in vitro and in vivo, results of the studies being analyzed in reviews and meta analyses. The aim of this systematic review was to evaluate biocompatibility of zirconia in animal studies in vivo expressed as results of histomorphometric tests. Databases were searched from 1980 until February 2016, with different combination of the following MeSH terms: zirconium, biocompatibility, dental implants, in vivo, animal studies. Letters to the editors, case reports, commentaries, review articles and articles published in other languages then English were excluded. The search of PubMed, ScienceDirect and Google Scholar databases yielded 690 titles. After abstract screening and duplicate discarding 50 articles were identified and finally, 40 were included in the review. Most of the studies compared zirconia with titanium, a well established material for dental implants. In majority of the studies zirconia showed a similar osseointegration with titanium. Surface implant treatments, like sandblasted and etched zirconia (ZrO2-SLA), alumina toughed zirconia (ATZ), and powder injection molding (PIM) were used to improve osseointegration of zirconia with good results. In the light of histomorphometric test, zirconia, no matter physical and structural forms tested, is a biocompatible material.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Shihong Chen ◽  
Zhijun Wang ◽  
Ying Huang ◽  
Stephen A. O'Barr ◽  
Rebecca A. Wong ◽  
...  

Ginseng, a well-known herb, is often used in combination with anticancer drugs to enhance chemotherapy. Its wide usage as well as many documentations are often cited to support its clinical benefit of such combination therapy. However the literature based on objective evidence to make such recommendation is still lacking. The present review critically evaluated relevant studies reported in English and Chinese literature on such combination. Based on our review, we found good evidence fromin vitroandin vivoanimal studies showing enhanced antitumor effect when ginseng is used in combination with some anticancer drugs. However, there is insufficient clinical evidence of such benefit as very few clinical studies are available. Future research should focus on clinically relevant studies of such combination to validate the utility of ginseng in cancer.


Author(s):  
Mariliis Klaas ◽  
Kristina Mäemets-Allas ◽  
Elizabeth Heinmäe ◽  
Heli Lagus ◽  
Claudia Griselda Cárdenas-León ◽  
...  

Thrombospondin-4 (THBS4) is a non-structural extracellular matrix molecule associated with tissue regeneration and a variety of pathological processes characterized by increased cell proliferation and migration. However, the mechanisms of how THBS4 regulates cell behavior as well as the pathways contributing to its effects have remained largely unexplored. In the present study we investigated the role of THBS4 in skin regeneration both in vitro and in vivo. We found that THBS4 expression was upregulated in the dermal compartment of healing skin wounds in humans as well as in mice. Application of recombinant THBS4 protein promoted cutaneous wound healing in mice and selectively stimulated migration of primary fibroblasts as well as proliferation of keratinocytes in vitro. By using a combined proteotranscriptomic pathway analysis approach we discovered that β-catenin acted as a hub for THBS4-dependent cell signaling and likely plays a key role in promoting its downstream effects. Our results suggest that THBS4 is an important contributor to wound healing and its incorporation into novel wound healing therapies may be a promising strategy for treatment of cutaneous wounds.


2021 ◽  
Author(s):  
ling wang ◽  
yang yu ◽  
cong zhou ◽  
run wan ◽  
Yumin Li

Abstract Background and objectives: Cancer morbidity and mortality rates remain high, and thus, at present, considerable efforts are focused on finding drugs with higher sensitivity against tumor cells and fewer side effects. Several preclinical and clinical studies have examined the potential of repurposing disulfiram (DSF) as an anticancer treatment. This systematic review aimed to assess evidence regarding the antineoplastic activity of DSF in in vitro and in vivo models, as well as in humans.Methods: Two authors independently conducted this systematic review of English and Chinese articles from the PubMed, Embase, and the Cochrane Library databases up to July 2019. Eligible in vitro studies needed to include assessments of the apoptosis rate by flow cytometry using annexin V/propidium iodide, and studies in animal models and clinical trials needed to examine tumor inhibition rates, and progression-free survival (PFS) and overall survival (OS), respectively. Data were analyzed using descriptive statistics.Results: Overall, 35 studies, i.e., 21 performed in vitro, 11 based on animal models, and three clinical trials, were finally included. In vitro and animal studies indicated that DSF was associated with enhanced apoptosis and tumor inhibition rates. Human studies showed that DSF prolongs PFS and OS. The greatest anti-tumor activity was observed when DSF was used as combination therapy or as a nanoparticle-encapsulated molecule.Conclusions: This systematic review provides evidence regarding the anti-tumor activity of DSF in vitro, in animals, and in humans and indicates the optimal forms of treatment to be evaluated in future research.


2020 ◽  
Vol 21 (17) ◽  
pp. 6377
Author(s):  
Anna-Jasmina Donaubauer ◽  
Lisa Deloch ◽  
Ina Becker ◽  
Rainer Fietkau ◽  
Benjamin Frey ◽  
...  

The bone is a complex organ that is dependent on a tight regulation between bone formation by osteoblasts (OBs) and bone resorption by osteoclasts (OCs). These processes can be influenced by environmental factors such as ionizing radiation (IR). In cancer therapy, IR is applied in high doses, leading to detrimental effects on bone, whereas radiation therapy with low doses of IR is applied for chronic degenerative and inflammatory diseases, with a positive impact especially on bone homeostasis. Moreover, the effects of IR are of particular interest in space travel, as astronauts suffer from bone loss due to space radiation and microgravity. This review summarizes the current state of knowledge on the effects of IR on bone with a special focus on the influence on OCs and OBs, as these cells are essential in bone remodeling. In addition, the influence of IR on the bone microenvironment is discussed. In summary, the effects of IR on bone and bone remodeling cells strongly depend on the applied radiation dose, as differential results are provided from in vivo as well as in vitro studies with varying doses of IR. Furthermore, the isolated effects of IR on a single cell type are difficult to determine, as the bone cells and bone microenvironment are building a tightly regulated network, influencing on one another. Therefore, future research is necessary in order to elucidate the influence of different bone cells on the overall radiation-induced effects on bone.


2019 ◽  
Vol 7 ◽  
Author(s):  
Sho Yamakawa ◽  
Kenji Hayashida

Abstract Growth factors have recently gained clinical importance for wound management. Application of recombinant growth factors has been shown to mimic cell migration, proliferation, and differentiation in vivo, allowing for external modulation of the healing process. Perioperative drug delivery systems can enhance the biological activity of these growth factors, which have a very short in vivo half-life after topical administration. Although the basic mechanisms of these growth factors are well understood, most have yet to demonstrate a significant impact in animal studies or small-sized clinical trials. In this review, we emphasized currently approved growth factor therapies, including a sustained release system for growth factors, emerging therapies, and future research possibilities combined with surgical procedures. Approaches seeking to understand wound healing at a systemic level are currently ongoing. However, further research and consideration in surgery will be needed to provide definitive confirmation of the efficacy of growth factor therapies for intractable wounds.


2021 ◽  
Author(s):  
Jiankai Li ◽  
Tianshuai Zhang ◽  
Mingmang Pan ◽  
Feng Xue ◽  
Fang Lv ◽  
...  

Abstract Impaired angiogenesis is one of the predominant reasons for non-healing diabetic wounds. Herein, a nanofiber/ hydrogel core-shell scaffold with three-dimensional (3D) multilayer patterned structure (3D-PT-P/GM) was introduced for promoting diabetic wound healing with improved angiogenesis. The results showed that the 3D-PT-P/GM scaffolds possessed multilayered structure with interlayer spacing of about 15-80 μm, and the hexagonal micropatterned structures were uniformly distributed on the surface of each layer. The nanofibers in the scaffold exhibited distinct core-shell structures with Gelatin methacryloyl (GelMA) hydrogel as the shell and Poly (D, L-lactic acid) (PDLLA) as the core. The results showed that the porosity, water retention time and water vapor permeability of the 3D-PT-P/GM scaffolds increased to 1.6 times, 21 times, and 1.9 times than that of the two-dimensional (2D) PDLLA nanofibrous scaffolds, respectively. The in vitro studies showed that the 3D-PT-P/GM scaffolds could significantly promote cell adhesion, proliferation, infiltration and migration throughout the scaffolds, and the expression of cellular communication protein-related genes, as well as angiogenesis-related genes in the same group, was remarkably upregulated. The in vivo results further demonstrated that the 3D-PT-P/GM scaffolds could not only effectively absorb exudate and provide a moist environment for the wound sites, but also significantly promote the formation of a 3D network of capillaries. As a result, the healing of diabetic wounds was accelerated with enhanced angiogenesis, granulation tissue formation, and collagen deposition. These results indicate that nanofiber/ hydrogel core-shell scaffolds with 3D multilayer patterned structures could provide a new strategy for facilitating chronic wound healing.


Sign in / Sign up

Export Citation Format

Share Document