scholarly journals An Overview on Personal Protective Equipment (PPE) Fabricated with Additive Manufacturing Technologies in the Era of COVID-19 Pandemic

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2703 ◽  
Author(s):  
Szilard Rendeki ◽  
Balint Nagy ◽  
Matyas Bene ◽  
Attila Pentek ◽  
Luca Toth ◽  
...  

Different additive manufacturing technologies have proven effective and useful in remote medicine and emergency or disaster situations. The coronavirus disease 2019 (COVID-19) disease, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus, has had a huge impact on our society, including in relation to the continuous supply of personal protective equipment (PPE). The aim of the study is to give a detailed overview of 3D-printed PPE devices and provide practical information regarding the manufacturing and further design process, as well as describing the potential risks of using them. Open-source models of a half-face mask, safety goggles, and a face-protecting shield are evaluated, considering production time, material usage, and cost. Estimations have been performed with fused filament fabrication (FFF) and selective laser sintering (SLS) technology, highlighting the material characteristics of polylactic acid (PLA), polyamide, and a two-compound silicone. Spectrophotometry measurements of transparent PMMA samples were performed to determine their functionality as goggles or face mask parts. All the tests were carried out before and after the tetra-acetyl-ethylene-diamine (TAED)-based disinfection process. The results show that the disinfection has no significant effect on the mechanical and structural stability of the used polymers; therefore, 3D-printed PPE is reusable. For each device, recommendations and possible means of development are explained. The files of the modified models are provided. SLS and FFF additive manufacturing technology can be useful tools in PPE development and small-series production, but open-source models must be used with special care.

2021 ◽  
Vol 10 (3) ◽  
pp. 550 ◽  
Author(s):  
Eleni Amelia Felinska ◽  
Zi-Wei Chen ◽  
Thomas Ewald Fuchs ◽  
Benjamin Otto ◽  
Hannes Götz Kenngott ◽  
...  

(1) Background: During the COVID-19 pandemic, shortages in the supply of personal protective equipment (PPE) have become apparent. The idea of using commonly available full-face diving (FFD) masks as a temporary solution was quickly spread across social media. However, it was unknown whether an FFD mask would considerably impair complex surgical tasks. Thus, we aimed to assess laparoscopic surgical performance while wearing an FFD mask as PPE. (2) Methods: In a randomized-controlled cross-over trial, 40 laparoscopically naive medical students performed laparoscopic procedures while wearing an FFD mask with ad hoc 3D-printed connections to heat and moisture exchange (HME) filters vs. wearing a common surgical face mask. The performance was evaluated using global and specific Objective Structured Assessment of Technical Skills (OSATS) checklists for suturing and cholecystectomy. (3) Results: For the laparoscopic cholecystectomy, both global OSATS scores and specific OSATS scores for the quality of procedure were similar (Group 1: 25 ± 4.3 and 45.7 ± 12.9, p = 0.485, vs. Group 2: 24.1 ± 3.7 and 43.3 ± 7.6, p = 0.485). For the laparoscopic suturing task, the FFD mask group needed similar times to the surgical mask group (3009 ± 1694 s vs. 2443 ± 949 s; p = 0.200). Some participants reported impaired verbal communication while wearing the FFD mask, as it muffled the sound of speech, as well as discomfort in breathing. (4) Conclusions: FFD masks do not affect the quality of laparoscopic surgical performance, despite being uncomfortable, and may therefore be used as a substitute for conventional PPE in times of shortage—i.e., the global COVID-19 pandemic.


2020 ◽  
Author(s):  
Sven Duda ◽  
Sascha Hartig ◽  
Karola Hagner ◽  
Lisa Meyer ◽  
Paula Wessling Intriago ◽  
...  

Background In 2020 the SARS-CoV-2 pandemic caused serious concerns about the availability of face masks. This paper studies the technical feasibility of user specific face mask production by 3D printing and the effectiveness of these masks. Material and Methods Six different face mask designs were produced by 3D printing and tested by subjective experimenter evaluation and using a respirator fit testing kit. Results were compared to the requirements as given for standard protective face masks. Results None of the printed masks came anywhere near the required standards for personal protective gear.ConclusionIn spite of their euphoric presentation in the press, none of the currently advertised 3D printed mask designs are suitable as reliable personal protective equipment.


2020 ◽  
Author(s):  
Jean Schmitt ◽  
Lewis S. Jones ◽  
Elise A. Aeby ◽  
Christian Gloor ◽  
Berthold Moser ◽  
...  

The worldwide outbreak of the COVID-19 drastically increased pressure on medical resources and highlighted the need for rapidly available, large-scale and low-cost personal protective equipment (PPE). In this work, an alternative full-face mask is adapted from a modified snorkel mask to be used as PPE with two medical grade filters and a 3D-printed adapter. As the mask covers the eyes, mouth and nose, it acts as a full-face shield, providing additional protection to healthcare workers. The filtration efficiency of different medical filters is measured for particles below 300 nm to cover the size of the SARS-CoV-2 and small virus-laden droplets. The filtration performance of the adapted full-face mask is characterized using NaCl particles below 500 nm and different fitting scenarios. The mask is compared to a commercial respirator and characterized according to the EN 149 standard, demonstrating that the protection fulfills the requirements for the FFP2 level (filtering face-piece 2, stopping at least 94% of airborne particles). The device shows a good resistance to several cycles of decontamination (autoclaving and ethanol immersion), is easy to be produced locally at low cost and helps addressing the shortage in FFP2 masks and face shields by providing adequate protection to healthcare workers against particles below 500 nm.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 752-757
Author(s):  
Lukas Weiser ◽  
Marco Batschkowski ◽  
Niclas Eschner ◽  
Benjamin Häfner ◽  
Ingo Neubauer ◽  
...  

Die additive Fertigung schafft neue Gestaltungsfreiheiten. Im Rahmen des Prototypenbaus und der Kleinserienproduktion kann das Verfahren des selektiven Laserschmelzens genutzt werden. Die Verwendung in der Serienproduktion ist bisher aufgrund unzureichender Bauteilqualität, langen Anlaufzeiten sowie mangelnder Automatisierung nicht im wirtschaftlichen Rahmen möglich. Das Projekt „ReAddi“ möchte eine erste prototypische Serienfertigung entwickeln, mit der additiv gefertigte Bauteile für die Automobilindustrie wirtschaftlich produziert werden können. Additive manufacturing (AM) offers new freedom of design. The selective laser-powderbed fusion (L-PBF) process can be used for prototyping and small series production. So far, it has not been economical to use it on a production scale due to insufficient component quality, long start-up times and a lack of automation. The project ReAddi aims to develop a first prototype series production to cost-effectively manufacture 3D-printed components for the automotive industry.


2020 ◽  
Vol 10 (24) ◽  
pp. 8967
Author(s):  
Victor Gil Muñoz ◽  
Luisa M. Muneta ◽  
Ruth Carrasco-Gallego ◽  
Juan de Juanes Marquez ◽  
David Hidalgo-Carvajal

The circular economy model offers great opportunities to companies, as it not only allows them to capture additional value from their products and materials, but also reduce the fluctuations of price-related risks and material supply. These risks are present in all kind of businesses not based on the circular economy. The circular economy also enables economic growth without the need for more resources. This is because each unit has a higher value as a result of recycling and reuse of products and materials after use. Following this circular economics framework, the Polytechnic University of Madrid (Universidad Politécnica de Madrid, UPM) has adopted strategies aimed at improving the circularity of products. In particular, this article provides the result of obtaining recycled PLA filament from waste originating from university 3D FFF (fused filament fabrication) printers and waste generated by “Coronamakers” in the production of visors and parts for PPEs (Personal Protective Equipment) during the lockdown period of COVID-19 in Spain. This filament is used in the production of 3D printed parts that university students use in their classes, so the circular loop is closed. The obtained score of Material Circularity Indicator (MCI) of this material has been calculated, indicating its high level of circularity.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3888
Author(s):  
Johanna Maier ◽  
Christian Vogel ◽  
Tobias Lebelt ◽  
Vinzenz Geske ◽  
Thomas Behnisch ◽  
...  

Generative hybridization enables the efficient production of lightweight structures by combining classic manufacturing processes with additive manufacturing technologies. This type of functionalization process allows components with high geometric complexity and high mechanical properties to be produced efficiently in small series without the need for additional molds. In this study, hybrid specimens were generated by additively depositing PA6 (polyamide 6) via fused layer modeling (FLM) onto continuous woven fiber GF/PA6 (glass fiber/polyamide 6) flat preforms. Specifically, the effects of surface pre-treatment and process-induced surface interactions were investigated using optical microscopy for contact angle measurements as well as laser profilometry and thermal analytics. The bonding characteristic at the interface was evaluated via quasi-static tensile pull-off tests. Results indicate that both the bond strength and corresponding failure type vary with pre-treatment settings and process parameters during generative hybridization. It is shown that both the base substrate temperature and the FLM nozzle distance have a significant influence on the adhesive tensile strength. In particular, it can be seen that surface activation by plasma can significantly improve the specific adhesion in generative hybridization.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 617
Author(s):  
Ruben Foresti ◽  
Benedetta Ghezzi ◽  
Matteo Vettori ◽  
Lorenzo Bergonzi ◽  
Silvia Attolino ◽  
...  

The production of 3D printed safety protection devices (SPD) requires particular attention to the material selection and to the evaluation of mechanical resistance, biological safety and surface roughness related to the accumulation of bacteria and viruses. We explored the possibility to adopt additive manufacturing technologies for the production of respirator masks, responding to the sudden demand of SPDs caused by the emergency scenario of the pandemic spread of SARS-COV-2. In this study, we developed different prototypes of masks, exclusively applying basic additive manufacturing technologies like fused deposition modeling (FDM) and droplet-based precision extrusion deposition (db-PED) to common food packaging materials. We analyzed the resulting mechanical characteristics, biological safety (cell adhesion and viability), surface roughness and resistance to dissolution, before and after the cleaning and disinfection phases. We showed that masks 3D printed with home-grade printing equipment have similar performances compared to the industrial-grade ones, and furthermore we obtained a perfect face fit by customizing their shape. Finally, we developed novel approaches to the additive manufacturing post-processing phases essential to assure human safety in the production of 3D printed custom medical devices.


Technologies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 49
Author(s):  
Alessia Romani ◽  
Andrea Mantelli ◽  
Paolo Tralli ◽  
Stefano Turri ◽  
Marinella Levi ◽  
...  

Fused filament fabrication allows the direct manufacturing of customized and complex products although the layer-by-layer appearance of this process strongly affects the surface quality of the final parts. In recent years, an increasing number of post-processing treatments has been developed for the most used materials. Contrarily to other additive manufacturing technologies, metallization is not a common surface treatment for this process despite the increasing range of high-performing 3D printable materials. The objective of this work is to explore the use of physical vapor deposition sputtering for the chromium metallization of thermoplastic polymers and composites obtained by fused filament fabrication. The thermal and mechanical properties of five materials were firstly evaluated by means of differential scanning calorimetry and tensile tests. Meanwhile, a specific finishing torture test sample was designed and 3D printed to perform the metallization process and evaluate the finishing on different geometrical features. Furthermore, the roughness of the samples was measured before and after the metallization, and a cost analysis was performed to assess the cost-efficiency. To sum up, the metallization of five samples made with different materials was successfully achieved. Although some 3D printing defects worsened after the post-processing treatment, good homogeneity on the finest details was reached. These promising results may encourage further experimentations as well as the development of new applications, i.e., for the automotive and furniture fields.


Sign in / Sign up

Export Citation Format

Share Document