scholarly journals Crystallization of Long-Spaced Precision Polyacetals III: Polymorphism and Crystallization Kinetics of Even Polyacetals Spaced by 6 to 26 Methylenes

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1560
Author(s):  
Stephanie F. Marxsen ◽  
Manuel Häußler ◽  
Stefan Mecking ◽  
Rufina G. Alamo

In this paper we extend the study of polymorphism and crystallization kinetics of aliphatic polyacetals to include shorter (PA-6) and longer (PA-26) methylene lengths in a series of even long-spaced systems. On a deep quenching to 0 °C, the longest even polyacetals, PA-18 and PA-26, develop mesomorphic-like disordered structures which, on heating, transform progressively to hexagonal, Form I, and Form II crystallites. Shorter polyacetals, such as PA-6 and PA-12 cannot bypass the formation of Form I. In these systems a mixture of this form and disordered structures develops even under fast deep quenching. A prediction from melting points that Form II will not develop in polyacetals with eight or fewer methylene groups between consecutive acetals was further corroborated with data for PA-6. The temperature coefficient of the overall crystallization rate of the two highest temperature polymorphs, Form I and Form II, was analyzed from the differential scanning calorimetry (DSC) peak crystallization times. The crystallization rate of Form II shows a deep inversion at temperatures approaching the polymorphic transition region from above. The new data on PA-26 confirm that at the minimum rate the heat of fusion is so low that crystallization becomes basically extinguished. The rate inversion and dramatic drop in the heat of fusion irrespective of crystallization time are associated with a competition in nucleation between Forms I and II. The latter is due to large differences in nucleation barriers between these two phases. As PA-6 does not develop Form II, the rate data of this polyacetal display a continuous temperature gradient. The data of the extended polyacetal series demonstrate the important role of methylene sequence length on polymorphism and crystallization kinetics.

2012 ◽  
Vol 535-537 ◽  
pp. 1142-1145
Author(s):  
Guang Tian Liu ◽  
Jing Lei

In this paper, the isothermal crystallization kinetics of isotactic polypropylene (iPP) and iPP with 5% hyperbranched polymer (HBP) added had been investigated by differential scanning calorimetry (DSC). The results show that a small addition of HBP affects the crystallization behavior of iPP. During isothermal crystallization, the crystallization rate of the blend is higher than those of iPP remarkably. An increase in the Avrami exponent may be attributed to the fractal structure of hyperbranched polymer. The crystallization activation energy is estimated by the Friedman equation, the results show that the activation energy decreases remarkably by addition of HBP and the crystallization rate of the blend is more sensitive to temperature than that of iPP.


2011 ◽  
Vol 396-398 ◽  
pp. 1688-1691
Author(s):  
Qing Chun Fan ◽  
Fei Hong Duan ◽  
Huai Bing Guo ◽  
Tian Wu

The isothermal crystallization kinetics of PP with different contents of AB2 hyperbranched polyester(HBP) added has been investigated. The results show that HBP acts as a nucleating agent for PP, and the hyperbranched polyester can decrease the half crystallization time (t1/2) and increase the crystallization rate of PP greatly. The Avrami exponents of PP and nucleated PP are all close to 2.5. Hoffman theory was adopted to calculate the interfacial free energy per unit area perpendicular to PP chains σe of PP and PP/HBP blends.


2014 ◽  
Vol 34 (4) ◽  
pp. 353-358 ◽  
Author(s):  
Yassir A. Eltahir ◽  
Haroon A.M. Saeed ◽  
Chen Yuejun ◽  
Yumin Xia ◽  
Wang Yimin

Abstract The non-isothermal crystallization behavior of polyamide 5,6 (PA56) was investigated by differential scanning calorimeter (DSC), and the non-isothermal crystallization kinetics were analyzed using the modified Avrami equation, the Ozawa model, and the method combining the Avrami and Ozawa equations. It was found that the Avrami method modified by Jeziorny could only describe the primary stage of non-isothermal crystallization kinetics of PA56, the Ozawa model failed to describe the non-isothermal crystallization of PA56, while the combined approach could successfully describe the non-isothermal crystallization process much more effectively. Kinetic parameters, such as the Avrami exponent, kinetic crystallization rate constant, relative degree of crystallinity, the crystallization enthalpy, and activation energy, were also determined for PA56.


2013 ◽  
Vol 848 ◽  
pp. 46-49
Author(s):  
Zi Nian Zhao ◽  
Xiao Li Lei

By means of melt blending process in a co-rotating twin screw extruder and blow molding , the low density polyethylene (LDPE)/thermoplastic elastomer(TPE) mixed membranes and LDPE/inorganic particles composite membrane were prepared. by differential scanning calorimetry(DSC) to study the non-isothermal crystallization kinetics of the LDPE composite system by differential scanning calorimetry (DSC).Use modified Jeziorny method to process the data ,the results shows that ZMS, SiO2, EVA and EMAA all play a role of heterogeneous nucleation and the crystallization rate of LDPE has been increased,especially the ZMS/LDPE composite system which heterogeneous nucleation is more obvious and crystallization rate is faster.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1078 ◽  
Author(s):  
Yu-Shan Jhu ◽  
Teng-Chun Yang ◽  
Ke-Chang Hung ◽  
Jin-Wei Xu ◽  
Tung-Lin Wu ◽  
...  

The crystallization behavior of bamboo fiber (BF) reinforced polypropylene (PP) composites (BPCs) was investigated using a differential scanning calorimeter (DSC). The results showed that unmodified BF as a nucleation agent accelerated the crystallization rate of the PP matrix during cooling whereas there is no significant effect on the improved crystallization rate in BPCs with acetylated BFs. Based on the Avrami method, Avrami–Ozawa method, and Friedman method, the corresponding crystallization kinetics of PP reinforced with different acetylation levels of BFs were further analyzed. The results demonstrated that the crystal growth mechanism of the PP matrix for BPCs with unmodified and various acetylated BFs exhibited tabular crystal growth with heterogeneous nucleation. A higher cooling rate is required to achieve a certain relative crystallinity degree at the unit crystallization time for BPCs with a higher weight percent gain (WPG) of acetylated BFs (WPG >13%). Furthermore, based on the Friedman method, the lowest crystallization activation energy was observed for the BPCs with 19% WPG of acetylated BFs.


2019 ◽  
Vol 17 (1) ◽  
pp. 1266-1278
Author(s):  
Omaima Alhaddad ◽  
Safaa H. El-Taweel ◽  
Yasser Elbahloul

AbstractThe effects of bacterial poly(hydroxyoctanoate) (PHO) and talc on the nonisothermal cold crystallization behaviours of poly(lactic acid) (PLA) were analysed with differential scanning calorimetry (DSC), and the thermal stability of the samples was observed with thermal gravimetric analysis (TGA). The modified Avrami’s model was used to describe the nonisothermal cold crystallization kinetics of neat PLA and its blends. The activation energies E for nonisothermal cold crystallization were calculated by the isoconversional method of Kissinger-Akahira-Sunose (KAS). The DSC results showed that the PLA/PHO blends were immiscible in the whole studied range, and as the PHO and talc content increased, the crystallization rate of PLA accelerated, and the crystallinity of PLA in the PLA samples increased. The values of the Avrami exponent indicated that the nonisothermal cold crystallization of the neat PLA and its blends exhibited heterogeneous, three-dimensional spherulitic growth. The E values were strongly dependent on PHO and talc. The TGA results showed that the presence of PHO and talc slightly influenced the thermal stability of PLA.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 702-709
Author(s):  
Hyeong Min Yoo ◽  
Su-Yeon Jeong ◽  
Sung-Woong Choi

Abstract The aim of this study was to determine the rheological property and crystallization behavior of polylactic acid (PLA) with improved heat resistance (Ingeo™ Biopolymer 4032D) through investigation of the melt viscosity and crystallization kinetics of PLA at different process temperatures. The viscosity was measured using a rotational rheometer under conditions of shear rates of 0.01, 0.1, and 1/s. The obtained rheological data show that the viscosity tended to decrease slightly as the shear rate increases and decrease sharply as the temperature increases from 180°C to 210°C. To investigate the effect of the process temperature on the crystallization kinetics and final crystallinity of PLA, thermal analysis using isothermal differential scanning calorimetry (DSC) were also performed. The Avrami equation was successfully applied for the isothermal crystallization kinetics model. From crystallization temperature of 85°C to 120°C, we found that the Ingeo™ Biopolymer 4032D PLA had the fastest crystallization rate (t 1/2: 26.0 min) and the largest crystallinity (47.4%) at 100°C.


2017 ◽  
Vol 748 ◽  
pp. 74-78
Author(s):  
Kun Yan Wang ◽  
Bin Li

Poly (trimethylene terephthalate) (PTT)/graphene oxide (GO) nanocomposites were prepared by melt mixing. The effect of GO on non-isothermal melt crystallization kinetics of PTT with different amounts of GO were investigated by differential scanning calorimetry (DSC). The Avrami, Ozawa and Mo were used to analyze the non-isothermal crystallization process. The results of Avrami analysis showed that adding GO into PTT matrix changed the crystallization nucleation of PTT. Ozawa analysis could not be used for the non-isothermal crystallization of PTT/GO nanocomposites. According to the results of Mo analysis, a higher cooling rate would be needed in order to obtain a higher degree of crystallinity at unit crystallization time.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1683
Author(s):  
Daniela Mileva ◽  
Jingbo Wang ◽  
Markus Gahleitner ◽  
Katalee Jariyavidyanont ◽  
René Androsch

The crystallization kinetics of metallocene-catalyzed heterophasic isotactic polypropylene composed of a matrix of isotactic polypropylene (iPP) and rubbery particles made of random ethylene–propylene copolymers (EPC), often denoted as heterophasic iPP copolymers, was analyzed as a function of the cooling rate and supercooling in nonisothermal and isothermal crystallization experiments, respectively. Fast scanning chip calorimetry (FSC) allowed assessing crystallization at processing-relevant conditions, and variation of the content (0–39 wt %) and composition (0–35 wt % propylene counits) of the EPC particles revealed qualitatively new insight about mechanisms of heterogeneous crystal nucleation. For neat iPP homopolymer, the characteristic bimodal temperature dependence of the crystallization rate due to predominance of heterogeneous and homogeneous crystal nucleation at high and low temperatures, respectively, is reconfirmed. At high temperatures, in heterophasic iPP, the here studied ethylene-(C2)-rich EPC particles accelerate crystallization of the iPP-matrix, with the acceleration or nucleation efficacy correlating with the EPC-particle content. The crystallization time reduces by more than half in presence of 39 wt % EPC particles. An additional nucleating effect of the EPC particles on iPP-matrix crystallization is detected after their crystallization, suggesting that liquid/rubbery particles are less effective than solid/semicrystalline particles in affecting crystallization of the surrounding iPP-matrix. At low temperature, homogeneous crystal nucleation in the iPP-matrix outpaces all heterogeneous nucleation effects, and the matrix-crystallization rate is independent of the sample composition. The obtained results lead to the conclusion that the crystallization kinetics of iPP can be affected significantly by the content and composition of EPC particles, even towards superfast crystallizing iPP grades.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Xiangning Wen ◽  
Yunlan Su ◽  
Shaofan Li ◽  
Weilong Ju ◽  
Dujin Wang

In this work, the crystallization kinetics of poly(ethylene oxide) (PEO) matrix included with poly(ethylene glycol) (PEG) grafted silica (PEG-g-SiO2) nanoparticles and bare SiO2 were systematically investigated by differential scanning calorimetry (DSC) and polarized light optical microscopy (PLOM) method. PEG-g-SiO2 can significantly increase the crystallinity and crystallization temperature of PEO matrix under the non-isothermal crystallization process. Pronounced effects of PEG-g-SiO2 on the crystalline morphology and crystallization rate of PEO were further characterized by employing spherulitic morphological observation and isothermal crystallization kinetics analysis. In contrast to the bare SiO2, PEG-g-SiO2 can be well dispersed in PEO matrix at low P/N (P: Molecular weight of matrix chains, N: Molecular weight of grafted chains), which is a key factor to enhance the primary nucleation rate. In particular, we found that the addition of PEG-g-SiO2 slows the spherulitic growth fronts compared to the neat PEO. It is speculated that the interfacial structure of the grafted PEG plays a key role in the formation of nuclei sites, thus ultimately determines the crystallization behavior of PEO PNCs and enhances the overall crystallization rate of the PEO nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document