scholarly journals Dual-Sizing Effects of Carbon Fiber on the Thermal, Mechanical, and Impact Properties of Carbon Fiber/ABS Composites

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2298
Author(s):  
Daekyun Hwang ◽  
Seung Goo Lee ◽  
Donghwan Cho

Dual-sizing effects with either epoxy or polyurethane (PU) on the thermal, mechanical, and impact properties of carbon fiber/acrylonitrile-butadiene-styrene (ABS) composites produced by extrusion and injection molding processes were investigated. The heat deflection temperature, dynamic mechanical, tensile, flexural, and impact properties of the composites reinforced with either (epoxy + epoxy) or (epoxy + PU) dual-sized carbon fiber were higher than those commercially single-sized with epoxy. The result indicated that the dual-sized carbon fiber significantly contributed not only to improving the heat deflection temperature and the storage modulus, but also to improving the tensile, flexural, and impact properties of carbon fiber/ABS composites. The highest improvement of the composite properties was obtained from the composite with (epoxy + PU) dual-sized carbon fiber. The improvement of the mechanical and impact properties was explained by the enhanced interfacial bonding between carbon fiber and ABS matrix and by the length distribution analysis of carbon fibers present in the resulting composites. The fiber–matrix interfacial behavior was qualitatively well-supported in terms of fiber pull-out, fiber breaking pattern, and debonding gaps between the fiber and the matrix, as observed from the fracture surface topography. This study revealed that the properties of carbon fiber/ABS composites prepared by extrusion and injection molding processes were improved by dual-sizing carbon fiber, which was performed after a commercial epoxy sizing process, and further improved by using PU as an additional sizing material.

2015 ◽  
Vol 35 (5) ◽  
pp. 503-510 ◽  
Author(s):  
Shia-Chung Chen ◽  
Min-Yuan Chien ◽  
Su-Hsia Lin ◽  
Rean-Der Chien ◽  
Ming-Chung Lin

Abstract Polymers filled with conducting fibers to provide electrical conductivity performance have received great attention due to the requirements of many engineering applications. In the present article, injection molding of acrylonitrile butadiene styrene (ABS)/carbon-fiber composites using applied gas counter pressure (GCP) was conducted and the overall fiber orientation and associated through-plane electrical conductivity (TPEC) of each layer (core, shear and skin layers) and various locations (far gate, center and near gate) were characterized. Results show that GCP had significant effects on the fiber orientation and skin layer thickness, resulting in decreases in the fiber orientation level (FOL) value in all locations and TPEC increases with increasing GCP in the core region of the molded composites (improvement of 62% when 100 bar GCP was applied). However, the effect of increased skin layer thickness in reducing TPEC was stronger than the effect of decreased FOL in raising TPEC when GCP was applied. This resulted in the overall TPEC falling slightly with increasing GCP. The results also show that the electrical conductivity followed the sequence of far gate>center>near gate and the FOL followed the order of core layer<shear layer<skin layer. The results obtained in this investigation reveal the potential application of GCP technology associated with mold temperature control in injection molding to manufacture products with enhanced electrical conductivity in the future.


2017 ◽  
Vol 728 ◽  
pp. 240-245 ◽  
Author(s):  
Yuuki Hisakura ◽  
Keinichi Kitahara ◽  
Makoto Sugihara ◽  
Akihiko Imajo ◽  
Hiroyuki Hamada

The direct fiber feeding injection molding (DFFIM) process is the new fabrication technique. This technique is able to eliminate the compounding process. In this study, the composite consisting of glass fiber/carbon fiber/ABS (GF/CF/ABS) were fabricated. Tensile, bending and Izod impact test were conducted to compare mechanical properties between glass fiber and glass fiber/carbon fiber hybrid composites. The additional of carbon fiber improved tensile, bending and impact properties of the hybrid composites. SEM photographs indicated that carbon fiber tended to agglomerate during DFFIM process. It can be noted that the low content of carbon fiber was suitable for enhanced mechanical performances of GF/CF/ABS hybrid composites.


2011 ◽  
Vol 415-417 ◽  
pp. 1435-1438
Author(s):  
Xue Li Nan ◽  
Xiao Min Li

In order to investigate conductive mechanism of carbon fiber filled cement-based composites, the conductive properties of cement paste, carbon fiber filled cement-based composites containing different contents of carbon fibers or aggregates were studied. Experimental results indicate that the electrical resistance of the plain cement paste obviously increases with hydration time, which results from the ionic conduction in strong electrolyte solution. The electrical resistivity of the carbon fiber filled cement-based composites decreases with the increase of fiber content. Both contacting conduction and ionic conduction are in charge of the electrical conduction in these composites. The electrical resistivity of the carbon fiber filled cement-based composites decreases under compression, which is due to the improvement of interface contact between matrix and fibers and the increase of fiber bridging probability. The fiber pull-out and breaking under tension lead to an increase in electrical resistivity of these composites. Aggregates block fiber dispersion and contact. This causes an increase in electrical resistivity of the composites.


Author(s):  
Jihun An ◽  
Byoung-Hyun Kang ◽  
Byoung-Ho Choi ◽  
Hyoung-Jun Kim

Poly(methylmethacrylate) (PMMA) is one of popular engineering polymers for many engineering applications such as glass substitutes, medical applications, electronic goods, optical fibers, laser disk optical media and so on. PMMA is a lightweight material with excellent optical properties and balanced mechanical properties. However, PMMA is commonly blended with various functional fillers, and rubber particles are one of them to improve the low impact toughness of unfilled PMMA comparing with other engineering polymers such as polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS) copolymer and so on. PMMA is generally used to make exterior of a commercial product, so scratch characteristics of PMMA is very important in terms of the aesthetic point of view. In this paper, rubber toughened PMMA plates are prepared by injection molding, and static and progressive scratch tests are performed. Samples are prepared by various injection molding conditions, and two orientations (machine direction and transverse direction) of the injection molded plate are considered for scratch tests. Three scratch damage mechanism stages, i.e. mar/ploughing, whitening and cutting stages, are identified by observing the scratch damages and two critical loads to define the variation of scratch damage mechanisms are recorded to evaluate the scratch resistance of rubber toughened PMMA samples. Scratch damage characteristics are examined by various microscopy techniques such as optical microscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, optical profiler and so on. It is clearly observed that scratch damage characteristics of rubber toughened PMMA are changed sensitively for various test conditions due to rubber particles, so it can be known that the mold design should be carefully optimized to improve scratch characteristics of injection molded rubber toughened PMMA product.


2003 ◽  
Vol 69 (680) ◽  
pp. 1145-1152 ◽  
Author(s):  
Kazuki ENOMOTO ◽  
Toshiyuki YASUHARA ◽  
Kazunori KATO ◽  
Naoto OHTAKE

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4234
Author(s):  
Samir Mekid ◽  
Hammam Daraghma ◽  
Salem Bashmal

The paper presents an investigation and analysis of the electromechanical and thermal characteristics of the carbon fiber alone as single tow and embedded in host materials such as polymer e.g., acrylonitrile butadiene styrene (ABS) using 3D printing. While carbon fibers can partially reinforce the structure, they can act as sensors to monitor the structural health of the host material. The piezo-resistive behavior was examined without any pretreatment of the carbon fiber under tensile test in both cases. Special focus on the filaments clamping types and their effects was observed. An auxetic behavior was exhibited; otherwise, the free part shows elastic and yielding ranges with break point at high resistance. An induced temperature of the carbon fiber was measured during the tensile test to show low variation. The carbon fiber can provide strength contribution to the host material depending on the percentage of filling the material in 3D printing. The relative variation of the electrical resistance increases by 400% while embedded in the host material, but decreases as the tows filament density increases from 1 to 12 K.


Sign in / Sign up

Export Citation Format

Share Document