scholarly journals Acetylation Modification of Waste Polystyrene and Its Use as a Crude Oil Flow Improver

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2505
Author(s):  
Wangyuan Zhang ◽  
Michal Slaný ◽  
Jie Zhang ◽  
Yifan Liu ◽  
Yunlei Zang ◽  
...  

Polystyrene is used in a wide range of applications in our lives, from machine housings to plastic cups and miniature electronic devices. When polystyrene is used, a large amount of waste is produced, which can cause pollution to the environment and even harm biological and human health. Due to its low bulk density (especially the foamed type) and low residual value, polystyrene cannot be easily recycled. Often waste polystyrene is difficult to recycle. In this paper, waste polystyrene has been modified by using acetic anhydride which caused a crude oil flow improver. The results showed that modified polystyrene improves the flow properties of the crude oil, reducing the viscosity and the pour point of the crude oil by up to 84.6% and 8.8 °C, respectively. Based on the study of the paraffin crystal morphology, the mechanism of improving the flow capacity of crude oil by modified polystyrene was proposed and analyzed.

2021 ◽  
Vol 11 (2) ◽  
pp. 711-724
Author(s):  
William Iheanyi Eke ◽  
Sampson Kofi Kyei ◽  
Joseph Ajienka ◽  
Onyewuchi Akaranta

AbstractWax formation creates flow assurance problems in the production and transportation of waxy crude oil. Flow improvers are added to waxy crude in order to reduce handling cost. Bio-based flow improvers derived from cheap renewable resources are attractive as cost-effective, eco-friendly alternatives to the conventional additives. Natural cashew nut shell liquid extracted from waste biomass (Anacardium occidentale shells) was derivatized and applied as flow improver for waxy crude oil. Effect of the additive on wax formation in crude oil was studied by cross-polarized microscopy, while the change in oil flow properties was evaluated using a rotational coaxial cylinder viscometer. Micrographs of the waxy crude were processed and analyzed with image J software. The microscopic properties of the wax crystals were characterized using Feret diameter, crystal area, aspect ratio, circularity, solidity and boundary fractal dimension. The pour point of doped crude oil was depressed by − 18 °C and the wax area fraction reduced by 40% due to wax inhibitive effect of the additive. The presence of the additive resulted in evolution of smaller, rounder and more regular wax crystals with smoother and more even surfaces indicated by reduction in the Feret diameter, aspect ratio and boundary fractal dimension of wax crystals in doped oil, and an increase in crystal circularity and solidity. The shear stress and viscosity of doped oil were reduced by 86.8% and 85.0%, respectively. The flow improvement effect of the CNSL derivative is linked to its effect on morphology and microstructure of wax crystals in the crude oil.


Author(s):  
W. Reid Dreher ◽  
Ray Johnston ◽  
Peter Lauzon ◽  
Joey Pierce

As worldwide heavy crude oil production increases, pipelines are faced with challenges to transport these higher viscosity fluids. Historically, heavy crude oil has been a challenge for existing commercially available DRAs. As crude oil gravities fall below ∼23 °API, existing DRAs become ineffective. ConocoPhillips Specialty Products Inc. (CSPI) developed a new class of DRAs to address this need. CSPI’s new heavy crude oil DRA technology, ExtremePower™ Flow Improvers, is proven to increase deliveries of produced heavy crude oil to market. In this paper we will discuss the mechanism of drag reduction, how a heavy crude oil DRA works, and two scenarios in which value is created by utilizing the product.


Fuel ◽  
2008 ◽  
Vol 87 (13-14) ◽  
pp. 2943-2950 ◽  
Author(s):  
A ERCEGKUZMIC ◽  
M RADOSEVIC ◽  
G BOGDANIC ◽  
V SRICA ◽  
R VUKOVIC

2018 ◽  
Vol 777 ◽  
pp. 226-231
Author(s):  
Jing Fang Xu ◽  
Zhen Guo ◽  
Fa Wang Zhang ◽  
Da Chuang Wang ◽  
Zhen Wang ◽  
...  

In this work, a series of hydroxylmethyl pentamine (HMPA) was synthesized from vegetable oil, tetraethylene pentamine and hexamethylenetetramine, which was evaluated as a crude oil flow improver. The results showed that HMPAs have good viscosity reduction effect on the crude oil from Yanchang Oilfield, with the highest viscosity reduction rate of 93%. The highest pour point reduction depression was achieved as 5.4°C. Paraffin crystal morphology characterization was conducted on the crude oil to elucidate the mechanism of viscosity reduction and pour point depression.


2012 ◽  
Vol 616-618 ◽  
pp. 948-953 ◽  
Author(s):  
Ying Xu ◽  
Rui Guo

The amidation grafted copolymers derived from styrene-maleic anhydride copolymer were prepared and characterized by FTIR. Their intrinsic viscosity and crystal morphology were measured. The prepared polymers were investigated as pour point depressants (PPD) and flow improvers for waxy crude oil, and it was found that the depression effect of PPD modified by mixture amines was more effective than single amine, and the maximum depression was obtained by the sample that modified by mixture amines from 13 °C to 4 °C (ΔPP = 9 °C, at 3 000 ppm). The effect of the PPD modified by mixture amines on the flow properties of waxy crude oil was investigated. The result show that the viscosity decreased from 1 223 mPa.s to 81.3 mPa.s at 13 °C and 3 000 ppm. In addition, the crystal morphology have also been improved for the same sample and conditions.


Author(s):  
М.И. Пряжников ◽  
А.В. Минаков ◽  
А.И. Пряжников ◽  
А.С. Якимов

The flow regimes of water and crude oil in a Y-type microchannel were studied in a wide range of flow rates. Four different types of water-oil flow regimes have been identified: plug, droplet, parallel and chaotic. The ranges of existence of these flow regimes have been determined. Dependences of the length of water plugs and droplets in oil on various parameters have been established. Maps of the corresponding water-oil flow regimes have been constructed.


2015 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Yanuar Yanuar ◽  
Kurniawan T. Waskito ◽  
Gunawan Gunawan ◽  
Budiarso Budiarso

1975 ◽  
Vol 10 (1) ◽  
pp. 73-83
Author(s):  
J.E.S. Graham ◽  
T.C. Hutchinson

Abstract Crude oil spills are increasingly likely to occur from drilling, pumping and transportation activities as oil development proceeds at a rapid pace. These spills may occur over the wide range of climatic conditions which obtain in Canada. Little is known of oil toxicity at different temperatures; consequently, laboratory studies were made of the variability of the toxicity of aqueous extracts of a Norman Wells crude oil to freshwater algae over the temperature range 5°C to 35°C. Two unicellular green algae were studied: Chlamydomonas eugametos and Chlorella vulgaris. Their response (measured by cell numbers) varied with temperature and species. Whereas Chlamydomonas eugametos showed a general pattern of growth inhibition by oil at all temperatures with maximum inhibition at 25°C, Chlorella vulgaris showed general growth stimulation by oil with maximum stimulation at 25°C, this temperature was chosen for all further experimentation. All experiments were done using unialgal cultures and sterile technique. Cells were grown in 50 ml of nutrient medium (BBM) in 125 ml Erlenmeyer flasks. Such flasks allow gas exchange and permit loss of volatile hydrocarbons. Aqueous extracts were made by slowly stirring 5% crude oil with the nutrient medium for six hours using a magnetic mixer. The extract was then allowed to sit for two to four hours before the lower fraction was drawn off for use. Experiments were carried out in controlled environment chambers (±2°C) with a twelve hour light-dark cycle. All further experiments used a similar methodology. (Note: Chlamydomonas eugametos experiments were carried out on a rotary shaker at 125 rpm.) An attempt was made to determine the reason for the remarkable stimulation in growth of Chlorella vulgaris #29 at 25°C. This organism has been described in the literature as heterotrophic. Thus three reasons for stimulation seemed possible: 1. heterotrophic uptake of hydrocarbons directly from solution; 2. heterotrophic uptake of organic compounds formed or released by microbial breakdown of hydrocarbons (the aqueous extract of crude was not sterile); or 3. the use of CO2 released to solution by microbial respiration. The original experiment was repeated in the dark at 20°C to determine if stimulation still occurred. It did not, since cells exposed to the aqueous extract decreased in numbers. However, after two weeks the cells were illuminated and even though experimental flasks started off with depleted populations, they outgrew the control cells within two weeks. This suggested that if stimulation was related to heterotrophism, it must, at least in this case, have been the unusual case of photoheterotrophism. The reasons for this stimulation of growth are currently under investigation. Several methods are being employed to investigate the suspected heterotrophism. Experiments will be done to determine whether light energy is essential to the stimulation. Two varieties of Chlorella vulgaris, i.e. #29 and #260 are heterotrophic and autotrophic respectively, are to be used in experiments. Sterile aqueous extracts made by pressure ultrafiltration will be used. These experiments should determine whether algal growth stimulation is related to heterotrophism or whether microbial degradation of hydrocarbons is the real source of stimulation. Although the toxicity of crude oil may be rapidly ameliorated by physical and/or biological phenomena, one must still be aware of the possibility of a large input of organic carbon causing extensive eutrophication. Thus both toxicity and eutrophication will cause a selection, in terms of survival, in a natural environment. It is evident that although an oil spill may not totally destroy an ecosystem, it will certainly alter its natural composition considerably.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4325
Author(s):  
Zhihua Wang ◽  
Yunfei Xu ◽  
Yi Zhao ◽  
Zhimin Li ◽  
Yang Liu ◽  
...  

Wax deposition during crude oil transmission can cause a series of negative effects and lead to problems associated with pipeline safety. A considerable number of previous works have investigated the wax deposition mechanism, inhibition technology, and remediation methods. However, studies on the shearing mechanism of wax deposition have focused largely on the characterization of this phenomena. The role of the shearing mechanism on wax deposition has not been completely clarified. This mechanism can be divided into the shearing dispersion effect caused by radial migration of wax particles and the shearing stripping effect caused by hydrodynamic scouring. From the perspective of energy analysis, a novel wax deposition model was proposed that considered the flow parameters of waxy crude oil in pipelines instead of its rheological parameters. Considering the two effects of shearing dispersion and shearing stripping coexist, with either one of them being the dominant mechanism, a shearing dispersion flux model and a shearing stripping model were established. Furthermore, a quantitative method to distinguish between the roles of shearing dispersion and shearing stripping in wax deposition was developed. The results indicated that the shearing mechanism can contribute an average of approximately 10% and a maximum of nearly 30% to the wax deposition process. With an increase in the oil flow rate, the effect of the shearing mechanism on wax deposition is enhanced, and its contribution was demonstrated to be negative; shear stripping was observed to be the dominant mechanism. A critical flow rate was observed when the dominant effect changes. When the oil flow rate is lower than the critical flow rate, the shearing dispersion effect is the dominant effect; its contribution rate increases with an increase in the oil flow temperature. When the oil flow rate is higher than the critical flow rate, the shearing stripping effect is the dominant effect; its contribution rate increases with an increase in the oil flow temperature. This understanding can be used to design operational parameters of the actual crude oil pipelines and address the potential flow assurance problems. The results of this study are of great significance for understanding the wax deposition theory of crude oil and accelerating the development of petroleum industry pipelines.


Energy Policy ◽  
2007 ◽  
Vol 35 (10) ◽  
pp. 5035-5050 ◽  
Author(s):  
Yuan Zhao ◽  
Li-Sha Hao ◽  
Lu Wan

Sign in / Sign up

Export Citation Format

Share Document