scholarly journals Карта режимов течения вода-нефть в прямом микроканале

Author(s):  
М.И. Пряжников ◽  
А.В. Минаков ◽  
А.И. Пряжников ◽  
А.С. Якимов

The flow regimes of water and crude oil in a Y-type microchannel were studied in a wide range of flow rates. Four different types of water-oil flow regimes have been identified: plug, droplet, parallel and chaotic. The ranges of existence of these flow regimes have been determined. Dependences of the length of water plugs and droplets in oil on various parameters have been established. Maps of the corresponding water-oil flow regimes have been constructed.

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6543
Author(s):  
Mieczysław Dzierzgowski

Laboratory measurements and analyses conducted in a wide range of changes of water temperature and mass flow rate for different types of radiators allowed to provides limitations and assessment of the current radiators heat transfer model according to EN 442. The inaccuracy to determinate the radiator heat output according to EN 442, in case of low water mass flow rates may achieve up to 22.3% A revised New Extended Heat Transfer Model in Radiators NEHTMiRmd is general and suitable for different types of radiators both new radiators and radiators existing after a certain period of operation is presented. The NEHTMiRmd with very high accuracy describes the heat transfer processes not only in the nominal conditions—in which the radiators are designed, but what is particularly important also in operating conditions when the radiators water mass flow differ significantly from the nominal value and at the same time the supply temperature changes in the whole range radiators operating during the heating season. In order to prove that the presented new model NEHTMiRmd is general, the article presents numerous calculation examples for various types of radiators currently used. Achieved the high compatibility of the results of the simulation calculations with the measurement results for different types of radiators: iron elements (not ribbed), plate radiators (medium degree ribbed), convectors (high degree ribbed) in a very wide range of changes in the water mass flow rates and the supply temperature indicates that a verified NEHTMiRmd can also be used in designing and simulating calculations of the central heating installations, for the rational conversion of existing installations and district heating systems into low temperature energy efficient systems as well as to directly determine the actual energy efficiency, also to improve the indications of the heat cost allocators. In addition, it may form the basis for the future modification of the European Standards for radiator testing.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
G. Leprince ◽  
C. Changenet ◽  
F. Ville ◽  
P. Velex

In order to investigate the oil projected by gears rotating in an oil bath, a test rig has been set up in which the quantity of lubricant splashed at several locations on the casing walls can be measured. An oblong-shaped window of variable size is connected to a tank for flow measurements, and the system can be placed at several locations. A series of formulae have been deduced using dimensional analysis which can predict the lubricant flow rate generated by one spur gear or one disk at various places on the casing. These results have been experimentally validated over a wide range of operating conditions (rotational speed, geometry, immersion depth, etc.).


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2505
Author(s):  
Wangyuan Zhang ◽  
Michal Slaný ◽  
Jie Zhang ◽  
Yifan Liu ◽  
Yunlei Zang ◽  
...  

Polystyrene is used in a wide range of applications in our lives, from machine housings to plastic cups and miniature electronic devices. When polystyrene is used, a large amount of waste is produced, which can cause pollution to the environment and even harm biological and human health. Due to its low bulk density (especially the foamed type) and low residual value, polystyrene cannot be easily recycled. Often waste polystyrene is difficult to recycle. In this paper, waste polystyrene has been modified by using acetic anhydride which caused a crude oil flow improver. The results showed that modified polystyrene improves the flow properties of the crude oil, reducing the viscosity and the pour point of the crude oil by up to 84.6% and 8.8 °C, respectively. Based on the study of the paraffin crystal morphology, the mechanism of improving the flow capacity of crude oil by modified polystyrene was proposed and analyzed.


2000 ◽  
Vol 6 (3) ◽  
pp. 159-166 ◽  
Author(s):  
Sun-Wen Cheng ◽  
Wen-Jei Yang

A numerical model is proposed to determine the dynamic behavior of single-phase and twophase, two-component flows through a horizontal rotating tube with identical twin exit branches. The working fluid, oil, enters the tube through a radial duct attached at one end and exits into open air through the twin radial branches, one located at midway and the other at the end of the tube. The branch-to-tube diameter ratio, rotational speed, and total oil flow rate are varied. It is experimentally revealed in previous study that the air cavitation occurs at lower speeds, leading to a two-phase flow with the air-oil ratio (void fraction) varying with the rotating speed. A unique characteristic in two-phase flow, i.e., hysteresis, is found to exist in both oil flow rates and inlet pressure. In theoretical modeling, the governing flow equations are incorporated by empirical equations for hydraulic head losses. The predicted and measured exit oil flow rates are compared with good agreement in both the single-phase and annular flow regimes. Only qualitative agreement is achieved in the bubbly and bubbly-slug flow regimes. The model can be applied to improve the design and thus enhance the performance of automatic transmission lines, and the cooling efficiency of rotating machines and petroleum drilling process.


Author(s):  
Ryan P. Jenkins ◽  
Monika Ivantysynova

Currently, fixed displacement pumps are typically used to provide the oil flow required for actuation of the clutches, cooling, and lubrication of automatic transmissions. This results in significant power losses as excess flow at higher engine speeds is throttled through orifices back to the tank. Therefore, the use of variable displacement pumps to supply the required oil flow can reduce the overall fuel consumption of the vehicle by eliminating this excess flow at high engine speeds. This paper presents the development and experimental validation setup of a model for a pressure compensated pivoting-cam-type variable displacement vane pump (VDVP) that is suitable for these applications. The pump operates at low system pressures (typically ∼5 bar with maximum 20 bar) with significant amounts of entrained air present in the working fluid (typically 3% by volume at the delivery) over a wide range of input speeds (700–6000 rpm). These conditions, along with a combination of a highly dynamic flow demand and dynamically changing pressure compensation setting, result in pump instabilities and loss of controllability. Previously, high leakage flow rates were introduced into the cam displacement control volume in an attempt to stabilize the pump with limited improvements. A high fidelity simulation model of the VDVP displacement chambers and cam displacement control volume pressure development was created in MATLAB/Simulink to accurately predict pump flow rates and cam dynamics in order to investigate these instabilities and methods for increasing the controllability of the VDVP. Additionally, the model provides a platform to assess the system sensitivity to changes in fluid/air mixture ratio, vane spacing, bias spring rate, and pump outlet pressure. A modified pump that was instrumented to measure the pressure gradients within each displacement chamber at the transitions between the suction and delivery ports under realistic operating conditions is presented. The modified pump was also instrumented with a linear variable displacement transducer (LVDT) to directly measure cam position during pump operation on an experimental test bed incorporating actual control valves found in an automatic transmission.


Author(s):  
Ali Nasir Khalaf ◽  
Asaad A. Abdullah

This work explores the possibility of using Newtonian turbulence k−ϵ and k−ω models for modelling crude oil flow in pipelines with drag reduction agents. These models have been applied to predict the friction factor, pressure drop and the drag reduction percentage. The simulation results of both models were compared with six published experimental data for crude oil flow in pipes with different types of drag reduction agents. The velocity near the wall was determined using the log law line of Newtonian fluid equation and by changing the parameter ΔB to achieve an excellent agreement with experimental data. Simulated data for k−ϵ model shows better agreement with most experimental data than the k−ω turbulence model.


2015 ◽  
Vol 2 (1) ◽  
pp. 6-12
Author(s):  
Agus Sugiarta ◽  
Houtman P. Siregar ◽  
Dedy Loebis

Automation of process control in chemical plant is an inspiring application field of mechatronicengineering. In order to understand the complexity of the automation and its application requireknowledges of chemical engineering, mechatronic and other numerous interconnected studies.The background of this paper is an inherent problem of overheating due to lack of level controlsystem. The objective of this research is to control the dynamic process of desired level more tightlywhich is able to stabilize raw material supply into the chemical plant system.The chemical plant is operated within a wide range of feed compositions and flow rates whichmake the process control become difficult. This research uses modelling for efficiency reason andanalyzes the model by PID control algorithm along with its simulations by using Matlab.


2015 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Yanuar Yanuar ◽  
Kurniawan T. Waskito ◽  
Gunawan Gunawan ◽  
Budiarso Budiarso

1975 ◽  
Vol 10 (1) ◽  
pp. 73-83
Author(s):  
J.E.S. Graham ◽  
T.C. Hutchinson

Abstract Crude oil spills are increasingly likely to occur from drilling, pumping and transportation activities as oil development proceeds at a rapid pace. These spills may occur over the wide range of climatic conditions which obtain in Canada. Little is known of oil toxicity at different temperatures; consequently, laboratory studies were made of the variability of the toxicity of aqueous extracts of a Norman Wells crude oil to freshwater algae over the temperature range 5°C to 35°C. Two unicellular green algae were studied: Chlamydomonas eugametos and Chlorella vulgaris. Their response (measured by cell numbers) varied with temperature and species. Whereas Chlamydomonas eugametos showed a general pattern of growth inhibition by oil at all temperatures with maximum inhibition at 25°C, Chlorella vulgaris showed general growth stimulation by oil with maximum stimulation at 25°C, this temperature was chosen for all further experimentation. All experiments were done using unialgal cultures and sterile technique. Cells were grown in 50 ml of nutrient medium (BBM) in 125 ml Erlenmeyer flasks. Such flasks allow gas exchange and permit loss of volatile hydrocarbons. Aqueous extracts were made by slowly stirring 5% crude oil with the nutrient medium for six hours using a magnetic mixer. The extract was then allowed to sit for two to four hours before the lower fraction was drawn off for use. Experiments were carried out in controlled environment chambers (±2°C) with a twelve hour light-dark cycle. All further experiments used a similar methodology. (Note: Chlamydomonas eugametos experiments were carried out on a rotary shaker at 125 rpm.) An attempt was made to determine the reason for the remarkable stimulation in growth of Chlorella vulgaris #29 at 25°C. This organism has been described in the literature as heterotrophic. Thus three reasons for stimulation seemed possible: 1. heterotrophic uptake of hydrocarbons directly from solution; 2. heterotrophic uptake of organic compounds formed or released by microbial breakdown of hydrocarbons (the aqueous extract of crude was not sterile); or 3. the use of CO2 released to solution by microbial respiration. The original experiment was repeated in the dark at 20°C to determine if stimulation still occurred. It did not, since cells exposed to the aqueous extract decreased in numbers. However, after two weeks the cells were illuminated and even though experimental flasks started off with depleted populations, they outgrew the control cells within two weeks. This suggested that if stimulation was related to heterotrophism, it must, at least in this case, have been the unusual case of photoheterotrophism. The reasons for this stimulation of growth are currently under investigation. Several methods are being employed to investigate the suspected heterotrophism. Experiments will be done to determine whether light energy is essential to the stimulation. Two varieties of Chlorella vulgaris, i.e. #29 and #260 are heterotrophic and autotrophic respectively, are to be used in experiments. Sterile aqueous extracts made by pressure ultrafiltration will be used. These experiments should determine whether algal growth stimulation is related to heterotrophism or whether microbial degradation of hydrocarbons is the real source of stimulation. Although the toxicity of crude oil may be rapidly ameliorated by physical and/or biological phenomena, one must still be aware of the possibility of a large input of organic carbon causing extensive eutrophication. Thus both toxicity and eutrophication will cause a selection, in terms of survival, in a natural environment. It is evident that although an oil spill may not totally destroy an ecosystem, it will certainly alter its natural composition considerably.


1984 ◽  
Vol 19 (1) ◽  
pp. 87-100
Author(s):  
D. Prasad ◽  
J.G. Henry ◽  
P. Elefsiniotis

Abstract Laboratory studies were conducted to demonstrate the effectiveness of diffused aeration for the removal of ammonia from the effluent of an anaerobic filter treating leachate. The effects of pH, temperature and air flow on the process were studied. The coefficient of desorption of ammonia, KD for the anaerobic filter effluent (TKN 75 mg/L with NH3-N 88%) was determined at pH values of 9, 10 and 11, temperatures of 10, 15, 20, 30 and 35°C, and air flow rates of 50, 120, and 190 cm3/sec/L. Results indicated that nitrogen removal from the effluent of anaerobic filters by ammonia desorption was feasible. Removals exceeding 90% were obtained with 8 hours aeration at pH of 10, a temperature of 20°C, and an air flow rate of 190 cm3/sec/L. Ammonia desorption coefficients, KD, determined at other temperatures and air flow rates can be used to predict ammonia removals under a wide range of operating conditions.


Sign in / Sign up

Export Citation Format

Share Document