scholarly journals Laser-Induced Graphene-Based Enzymatic Biosensor for Glucose Detection

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2795
Author(s):  
Kalpana Settu ◽  
Pin-Tzu Chiu ◽  
Yu-Ming Huang

Laser-induced graphene (LIG) has recently been receiving increasing attention due to its simple fabrication and low cost. This study reports a flexible laser-induced graphene-based electrochemical biosensor fabricated on a polymer substrate by the laser direct engraving process. For this purpose, a 450 nm UV laser was employed to produce a laser-induced graphene electrode (LIGE) on a polyimide substrate. After the laser engraving of LIGE, the chitosan–glucose oxidase (GOx) composite was immobilized on the LIGE surface to develop the biosensor for glucose detection. It was observed that the developed LIGE biosensor exhibited good amperometric responses toward glucose detection over a wide linear range up to 8 mM. The GOx/chitosan-modified LIGE biosensor showed high sensitivity of 43.15 µA mM−1 cm−2 with a detection limit of 0.431 mM. The interference studies performed with some possible interfering compounds such as ascorbic acid, uric acid, and urea exhibited no interference as there was no difference observed in the amperometric glucose detection. It was suggested that the LIGE-based biosensor proposed herein was easy to prepare and could be used for low-cost, rapid, and sensitive/selective glucose detection.

2022 ◽  
Vol 12 ◽  
Author(s):  
Ana I. Corominas ◽  
Yollyseth Medina ◽  
Silvia Balconi ◽  
Roberto Casale ◽  
Mariana Farina ◽  
...  

We assessed the diagnostic utility of uric acid for the prediction of preeclampsia. An observational prospective approach was carried out during 2014. Preeclamptic women were classified into 4 groups accordingly to the onset of preeclampsia and the presence of intrauterine growth restriction (IUGR). Serum uric acid levels, urea, and creatinine were measured. Receiver operating curves (ROC) of the uric acid levels ratio (UAr) between a dosage before and after the 20th week of gestation were performed. One thousand two hundred and ninety-third pregnant women were enrolled in this study. Eight hundred ten had non-complicated pregnancies, 40 preeclampsia, 33 gestational hypertension, and 20 IUGR without preeclampsia. Uric acid significantly raised after 20 weeks of gestation in women who develop preeclampsia before 34 weeks (Group A) or in those who develop preeclampsia after 37 weeks associated with IUGR (Group C). In women who develop preeclampsia after 34 weeks without IUGR (Groups B and D), uric acid increased after the 30th week of gestation. In all groups, UAr was greater than 1.5. In gestational hypertension, UAr was superior to 1.5 toward the end of gestation, while in IUGR without preeclampsia, the behavior of serum uric acid was similar to non-complicated pregnancies. In all cases, urea and creatinine showed normal values, confirming that patients had no renal compromise. ROC area was 0.918 [95% confidence interval (CI): 0.858–0.979) for the preeclampsia group and 0.955 (95% CI: 0.908–1.000) for Group A. UAr at a cut-off point ≥1.5 had a very low positive predictive value, but a high negative predictive value of 99.5% for preeclampsia and it reached 100% for Group A. Thus, a UAr less than 1.5 may be a helpful parameter with a strong exclusion value and high sensitivity for those women who are not expected to develop preeclampsia. Additionally, this low-cost test would allow for better use of resources in developing countries.


Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 84 ◽  
Author(s):  
Aihua Jing ◽  
Gaofeng Liang ◽  
Yixin Yuan ◽  
Wenpo Feng

The quantification of ascorbic acid (AA), dopamine (DA), and uric acid (UA) has been an important area of research, as these molecules’ determination directly corresponds to the diagnosis and control of diseases of nerve and brain physiology. In our research, graphene oxide (GO) with nano pores deposited with gold nanoparticles were self-assembled to form three-dimensional (3D) Au/holey-graphene oxide (Au/HGO) composite structures. The as-prepared 3DAu/HGO composite structures were characterized for their structures by X-ray diffraction, Raman spectrum, scanning electron microscopy, and transmission electron microscopy coupled with cyclic voltammograms. Finally, the proposed 3DAu/HGO displayed high sensitivity, excellent electron transport properties, and selectivity for the simultaneous electrochemical determination of AA, DA and UA with linear response ranges of 1.0–500 μM, 0.01–50 μM and 0.05–50 μM respectively. This finding paves the way for graphene applications as a biosensor for detecting three analytes in human serum.


Author(s):  
Che-Wei Hsu ◽  
Wen-Chao Feng ◽  
Kang J. Chang ◽  
Gou-Jen Wang

In this study, a novel and simple electrochemical glucose biosensor based on a silicon nanowire array (SNA) electrode was proposed. Metal-assisted etching (MAE) method using an AgNO3 and HF mixing solution as the etchant was employed to grow the silicon nanowire array (SNA) electrode. A thin gold shell is then sputtered over each silicon nanowire. Potassium ferricyanide, glucose oxidase (GOx), and a Nafion thin film were then sequentially coated onto the fabricated SNA for glucose detection. The processing time of the MAE and sputtering as well as the GOx concentration were optimized in terms of the redox peak currents of the SNA electrode. Compared with the corresponding plane gold electrode, the effective sensing area of the synthesized SNA electrode was measured to be 6.12 folds. Actual glucose detections demonstrated that the proposed SNA array electrode could operate in a linear range of 0.55 mM-11.02 mM and a very high sensitivity of 346 μA mM−1 cm−2. The proposed SNA electrode based glucose biosensor possesses advantages of simple fabrication process, low cost, and high sensitivity. It is feasible for future clinical applications.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1691 ◽  
Author(s):  
Yue Wang ◽  
Tian Yang ◽  
Yasushi Hasebe ◽  
Zhiqiang Zhang ◽  
Dongping Tao

Carbon black (CB) and carbon nanotube (CNT) co-doped polyimide (PI) modified glassy carbon electrode (CB-CNT/PI/GCE) was first prepared for the simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The CB-CNT/PI/GCE exhibited persistent electrochemical behavior and excellent catalytic activities. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used for the simultaneous detection of AA, DA, and UA in their ternary mixture. The peak separations between AA and DA, and DA and UA, are up to 166 mV and 148 mV, respectively. The CB-CNT/PI/GCE exhibited high sensitivity to DA and UA, with the detection limit of 1.9 µM and 3 µM, respectively. In addition, the CB-CNT/PI/GCE showed sufficient selectivity and long-term stability, and was applicable to detect AA, DA, and UA in human urine sample.


Nanoscale ◽  
2020 ◽  
Vol 12 (19) ◽  
pp. 10809-10815 ◽  
Author(s):  
Zhongwen Long ◽  
Yuzhang Liang ◽  
Lei Feng ◽  
Hui Zhang ◽  
Mingze Liu ◽  
...  

A low-cost, large scale plasmonic metasurface sensing platform shows enormous potential for highly sensitive and selective SERS-based glucose detection.


RSC Advances ◽  
2015 ◽  
Vol 5 (16) ◽  
pp. 11925-11932 ◽  
Author(s):  
Jinying Sun ◽  
Libo Li ◽  
Xueping Zhang ◽  
Dong Liu ◽  
Simin Lv ◽  
...  

This paper demonstrates high electrocatalytic activity of NCNF/GCE towards small biomolecules. The proposed electrochemical sensor exhibits good selectivity, high sensitivity and excellent stability towards AA, DA and UA simultaneous detection.


Sign in / Sign up

Export Citation Format

Share Document