scholarly journals A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2815
Author(s):  
Faisal Khaled Aldawood ◽  
Abhay Andar ◽  
Salil Desai

Drug delivery through the skin offers many advantages such as avoidance of hepatic first-pass metabolism, maintenance of steady plasma concentration, safety, and compliance over oral or parenteral pathways. However, the biggest challenge for transdermal delivery is that only a limited number of potent drugs with ideal physicochemical properties can passively diffuse and intercellularly permeate through skin barriers and achieve therapeutic concentration by this route. Significant efforts have been made toward the development of approaches to enhance transdermal permeation of the drugs. Among them, microneedles represent one of the microscale physical enhancement methods that greatly expand the spectrum of drugs for transdermal and intradermal delivery. Microneedles typically measure 0.1–1 mm in length. In this review, microneedle materials, fabrication routes, characterization techniques, and applications for transdermal delivery are discussed. A variety of materials such as silicon, stainless steel, and polymers have been used to fabricate solid, coated, hollow, or dissolvable microneedles. Their implications for transdermal drug delivery have been discussed extensively. However, there remain challenges with sustained delivery, efficacy, cost-effective fabrication, and large-scale manufacturing. This review discusses different modes of characterization and the gaps in manufacturing technologies associated with microneedles. This review also discusses their potential impact on drug delivery, vaccine delivery, disease diagnostic, and cosmetics applications.

2021 ◽  
Author(s):  
◽  
Olivia Howells

There are numerous modes of therapeutic administration, of which oral delivery is the most convenient and conventional as it involves administration of therapeutics in the form of liquids or solid capsules and tablets. However, this mode encounters several challenges, such as chemical processes within the gastrointestinal track and first pass metabolism which subsequently reduce the efficacy of the therapeutic drugs. To overcome these issues, transdermal drug administration in the form of hypodermic needles, topical creams, and transdermal patches have been employed. However, the effect of transdermal administration is limited due the stratum corneum layer of the skin, which acts as a lipophilic and hydrophobic barrier preventing external molecules from entering the skin. Therefore, hypodermic needles are used due to their sharp tip facilitating penetration through the stratum corneum to deposit the drug formulation into the skin, subcutaneous fat, or muscles layers. However, these needles induce needle-phobia and reduce patient compliance due to the complexity with administration and pain associated with injection. Microneedle devices have been developed to avoid these issues and provide enhanced transdermal therapeutic drug delivery in a minimally invasive manner to eliminate the first-pass metabolism and provide a sustained release. Unlike hypodermic needles injection, they do not cause pain and related fear or phobia in individuals, thereby improving compliance to the prescribed dosage regime. Till now different types of microneedles have been fabricated. These include, solid, coated, hollow and dissolvable, where each type has its own advantages and unique properties and designs. In this thesis, two novel methods utilising silicon etching processes, for the fabrication of both out-of-plane and in-plane silicon microneedles are presented. Hollow out-of-plane microneedles are manufactured through deep reactive-ion etching (DRIE) technology. The patented three-step process flow has been developed to produce multiple arrays of sharp bevelled tipped, hollow microneedles which facilitate easy insertion and controlled fluid injection into excised skin samples. The in-plane microneedles have been fabricated from simultaneous wet KOH etching of the front and reverse of (100) orientated silicon wafers. The characteristic 54.7˚ sidewall etch angle was utilised to form a sharp six-sided microneedle tip and hexagonal shaped shaft. Employing this method allowed fabrication of both solid and hollow microneedles with different geometries i.e., widths and heights of several µm, to determine the optimal MN height and width for effective penetration and transdermal drug delivery. All microneedles fabricated during the PhD studentship tenure have been characterised through histology, fluorescent studies, and delivery into ex-vivo porcine and human skin tissue (research ethics committee reference 08/WSE03/55) to demonstrate effective microneedle based transdermal therapeutic drug delivery. The transdermal delivery of insulin and hyaluronic acid has been successfully demonstrated by employing a simple poke and patch application technique, presenting a clinical improvement over traditional application such as creams and ointments.


Author(s):  
Lakshmi Usha Ayalasomayajula ◽  
M. Kusuma Kumari ◽  
Radha Rani Earle

In the recent days about 75% of the drugs taken orally are does not show the desired therapeutic effect. Oral conventional dosage forms have several disadvantages such as poor bioavailability due to hepatic first pass metabolism and tendency to produce rapid blood level spikes (Both high and low). Thus, rapid drug levels in the plasma leads to a need of high and/or frequent dosing, which can be both uneconomical and inconvenient. To overcome such disadvantages transdermal drug delivery system was developed. TDDS is such a delivery system which has been explored extensively over the last two decades, with therapeutic success. Transdermal drug delivery systems (TDDS) are the drug delivery systems which involves transportation of drug to epidermal and dermal tissues of the skin for local therapeutic action while major fraction of the drug is transported into the systemic blood circulation. Topical administration of therapeutic agents offers vast advantages over conventional oral and invasive methods of drug delivery. Some of the advantages of transdermal drug delivery include limitation of hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady state plasma level concentration of the drug. This study includes a brief overview of TDDS, its advantages over conventional dosage forms, drug delivery routes across human skin, permeation enhancers, and classification, formulation, methods of preparation and evaluation of transdermal patches.


Author(s):  
Harini Amballa ◽  
Navaneetha Kaluva ◽  
Sree Giri Prasad Beri ◽  
Krishna Mohan Chinnala ◽  
Mayuri Konda

Mucoadhesive drug release system is a preferably unidirectional release system where mucosal epithelial exterior is enclosed by the mucus deposit that interacts with the bio-adhesive drug delivery system and swelling time of the buccal dosage form which is amplified by mucin molecules at the location of administration. Eplerenone is an Anti-hypertensive drug that undergoes hepatic first pass metabolism and shows 69% of bioavailability. In order to bypass the hepatic first pass metabolism the drug is designed to be delivered through buccal cavity to avoid the first pass metabolism. Eplerenone buccal tablets were formulated by using direct compression method with different polymers like HPMC K 100M, Carbopol 934P, Carbopol 974P, Xantham Gum, Eudragit L100 and NaCMC in various concentrations and compositions. Incompatibility complications were not observed from the FTIR spectrums. The formulated and prepared buccal solid dosage forms were evaluated for pre-compressions and post- compression parameters such as hardness, weight variation, thickness, friability, surface pH, swelling index, in-vitro dissolution studies, drug content uniformity, mucoadhesion strength and mucoadhesion time. Evaluation results of formulation F12 are proven to be the optimal formulation showing highest mucoadhesion time, mucoadhesion strength and in-vitro drug release for prolonged period of time about 8 hours. Eplerenone is best delivered through buccal drug delivery system to enhance its oral bioavailability and bypass the hepatic first pass metabolism.


2020 ◽  
Vol 13 (1) ◽  
pp. 130-135
Author(s):  
Seema ◽  
Kapil kumar ◽  
Deepak Teotia

Buccal Patches are the type of drug formulation that has normally a different course of administration through the buccal mucosa for drug delivery. The product is placed between upper gingiva (gums) and cheek to treat local and systemic conditions. Buccal patch have good accessibility to the membranes that line the oral cavity. These patches tend to help drug enter directly into the systemic circulation escaping hepatic first pass metabolism. This type of drug delivery method is considered useful for elevating the bioavailability of drugs. This review is a thorough study to apprehend the procedures involved in assessment of buccal patches and the modern approach towards this type of drug delivery. This article intends to analyze the overall profile of Buccal Patches and scope of future advances.


2021 ◽  
Vol 16 (3) ◽  
pp. 235-240
Author(s):  
Kapil Kumar ◽  
Gurleen Kaur ◽  
Seema ◽  
Deepak Teotia ◽  
Ikram

Buccal patches are the types of formulations in which the drug is administered through buccal mucosa. these patches are or placed in between the gums and the for the pharmacological response. The main advantage of these patches is there is no first pass metabolism takes place and easily absorb in systemic circulation through themucosa .the main objective of this drug delivery system is to elevate or increase the bioavailability of the drug. the review informs about the steps involve in the preparation of buccal patch and to promote the awareness towards this type of drug delivery system. This article intends to analyze the overall profile of Buccal Patches and scope of future advances.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (01) ◽  
pp. 5-14
Author(s):  
Menra Muse ◽  
J. S. Dua ◽  
D. N. Prasad ◽  

Buccal administration of drugs leads to systemic circulation through internal jugular vein, bypassing them from hepatic first pass metabolism and leading to greater bioavailability. Buccal mucosa is most preferred site for both local as well as systemic action. For administration of drug through mucosal route, various types of dosage forms can be prepared. Buccal films can release topical drugs with controlled and sustained effects. Buccal films have the advantage of improved patient compliance because of reduced size with a suitable thickness as compare to other delivery systems. Buccal film can enhance absorption of active medicament as compared to others. Synthetic natural and semi synthetic polymers in low concentration can be used for the preparation of buccal films. Such types of dosage forms are cost effective, non-irritating, easy to handle, elegant, rapidly absorbable and most preferred by consumer. The review describes the anatomy of oral mucosa, mechanism of buccal absorption, methods to increase drug delivery via a buccal route, formulation aspects and evaluation parameters of buccal films.


2017 ◽  
Vol 20 (2) ◽  
pp. 424-439 ◽  
Author(s):  
Hooman Armand ◽  
Ivan Stoianov ◽  
Nigel Graham

Abstract The sectorisation of water supply networks (WSNs) includes the permanent closure of valves in order to achieve a cost-effective leakage management and simplify pressure control. The impact of networks sectorisation, also known as district metered areas (DMAs), on water quality and discolouration has not been extensively studied and it remains unknown. In addition, hydraulic variables used in the literature for assessing the likelihood of potential discolouration are limited and inconclusive. This paper investigates a methodology to evaluate the impact of networks sectorisation (DMAs) on water quality and the likelihood of discolouration incidents. The methodology utilises a set of surrogate hydraulic variables and an analysis of the hydraulic condition in pipes with historic discolouration complaints. The proposed methodology has been applied to a large-scale WSN, with and without sectors, in order to assess the potential impact of DMAs on water quality. The results demonstrate that the sectorisation of WSN (DMAs) could compromise the overall water quality and increase the likelihood of discolouration incidents. The results of this study and the proposed surrogate hydraulic variables facilitate the formulation of optimisation problems for the re-design and control of WSNs with sectorised topologies.


2014 ◽  
Vol 64 ◽  
pp. 26-36 ◽  
Author(s):  
Sarala Yanamandra ◽  
Natarajan Venkatesan ◽  
Veeran Gowda Kadajji ◽  
Zhijun Wang ◽  
Manish Issar ◽  
...  

Author(s):  
P. Kranthi Kumar ◽  
R. Santosh Kumar

Transdermal drug delivery systems (TDDS), which are self-administrable and non-invasive, can improve bioavailability and patient compliance by bypassing first-pass metabolism. Vesicular-based TDDS have attracted a lot of attention in recent years because they're designed for controlled, efficient, and targeted drug delivery. One of these delivery technologies, transferosomal-based formulations, has grown in popularity due to its ability to achieve all of the desired criteria and quality qualities. Transferosomes combine the characteristics of liposomes and niosomes because they contain both liposomes (phospholipids and cholesterols) and niosomes as components (nonionic surfactants; edge activators). as a result, they are referred to as the first generation of elastic liposomes. However transdermal drug delivery is difficult due to the presence of the skin's protective barrier, transferosomal drug delivery overcomes all obstacles due to its unique characteristics, such as its ultradeformable vesicular nature. The benefits, limitations, modes of penetration, formulations, production and assessment methodologies, and pharmaceutical uses of transferosomal drug delivery systems are discussed in this paper. Conclusion: Transferosomes have several importance over other vesicular systems, including greater deformability, greater penetration power across skin, the ability to deliver systemic drugs, and higher stability.


Author(s):  
SHIFA HAJU ◽  
SHEELA YADAV ◽  
REESHA BAIG ◽  
GAURANG SAWANT

Buccal drug delivery especially refers to the delivery of drugs through the buccal mucosal membrane lining of the oral cavity. For geriatric and pediatric patients who undergo difficulties in swallowing conventional oral solid dosage forms, the buccal film is a better alternative. The buccal film is appropriate for the drugs which experience high first-pass metabolism and is used for enhancing bioavailability with reducing dosing frequency to mouth plasma peak levels, which thus limit side-effects and make it cost-effective. It enhances the efficacy of API in the oral cavity after the contact with less saliva as contrasted to tablets, without chewing and no need for water for administration. This review briefly describes the advantages and limitations of buccal film, an anatomical structure of oral mucosa, highlighting the mechanisms of drug permeation, formulation technologies, methodology in evaluating buccal film, and recent advances of the buccal film as a tool for drug delivery for various treatments.


Sign in / Sign up

Export Citation Format

Share Document