scholarly journals Preparation and Application of Fluorine-Free Finishing Agent with Excellent Water Repellency for Cotton Fabric

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2980
Author(s):  
Chengbing Yu ◽  
Kaiqin Shi ◽  
Jinyan Ning ◽  
Zhe Zheng ◽  
Hualong Yu ◽  
...  

Water repellent is an important functional finish for cotton fabric. However, cotton fabrics often have poor washing resistance and other performances after actual finishing. In this study, based on the structural characteristics of cotton fiber and durability of water repellent, a cross-linked amino long-chain alkyl polysiloxane (CAHPS) was first prepared, and then reacted with modified silica. Finally, a chemically bonded organic–inorganic nanohybrid cross-linked polysiloxane (rSiO2-CAHPS) was fabricated. Furthermore, the rSiO2-CAHPS was emulsified to obtain a durable fluorine-free water repellent. The water repellent finishing for cotton fabric was carried out by the pad–dry–cure process. After finishing, the cotton fabric had good resistance to conventional liquids and excellent washing resistance, and still maintained good water repellency after 30 rounds of soaping. Moreover, properties including air permeability, mechanical property and whiteness are hardly affected after finishing. SEM and XPS characterization show that a layer of dense silicon film is formed on the surface of cotton fabric by rSiO2-CAHPS water repellent. The existence of nanosilica can improve the surface roughness of cotton fibers. The synergistic effect of fiber matrix, nanoparticles and CAHPS endows the fabric with a micro/nano-multi-scale micro-rough structure, which improves the water repellency of cotton fabric after water repellent finishing.

2019 ◽  
Vol 90 (9-10) ◽  
pp. 991-1001 ◽  
Author(s):  
Zeynep Omerogullari Basyigit ◽  
Dilek Kut ◽  
Peter Hauser

Nowadays, the methods and techniques used in the textile industry are required to be environmentally friendly, and water and energy saving. In addition to these, they should transfer more than one functionality, in other words give multifunctionality to the textile material with reliable and sufficient results in terms of efficiency and permanence. With the increase in and diversification of today's industrial requirements, one functionality on the fabric may be insufficient to meet the requirements, and therefore the subject of multifunctionality holds an important place in the textile industry. Therefore, in this study flame retardant, antibacterial and water-repellent, single-layered multifunctional 100% cotton fabrics with different functionalities on different sides (back and face surfaces) of the fabric were obtained via a chemical foam application method, which has many advantages compared with conventional methods. In some of the experimental parts, impregnation and foam application methods were combined in the process in order to optimize the multifunctionality properties of the fabrics. In order to indicate the performance test of cotton fabric, vertical burning test, contact angle test, antibacterial test against Gram positive and Gram negative bacteria, color spectrum analysis and tearing strength test were carried out while, in terms of characterization tests, Fourier transform infrared (attenuated total reflectance) and scanning electron microscope analyses were performed. According to the test results, the flame retardancy effect of the samples was improved significantly while antibacterial results showed a 99% reduction of bacteria and the finished fabrics demonstrated improved water repellency with contact angles up to 125°. In addition, the functionalities were durable up to 50 washing and 50 drying cycles.


2011 ◽  
Vol 332-334 ◽  
pp. 1457-1461 ◽  
Author(s):  
Shao Qiang Zhou ◽  
Jian He Cai ◽  
Shao Wei Dong ◽  
Guo Qiang Chen

A new-style fluorine-containing polymer with short chain was synthesized. The fabrics were finished with polymer emulsions with different contents of fluorine. The performances of the polymers were compared with two kinds of similar products, which contained water repellency, oil repellency, contact angle, brightness, and etc. The type of monomer was determined with infrared spectrum. The variety of micro-morphologic structure of cotton fabrics before and after the finishing was studied with SEM, XRD, and etc. It showed that the polymer was copolymerized by three kinds of acrylic ester monomers, and the application performance was in general accord with the same kind of advanced products of the world.


2015 ◽  
Vol 10 (2) ◽  
pp. 155892501501000
Author(s):  
Chaohong Dong ◽  
Zhou Lu ◽  
Ping Zhu ◽  
Lei Wang ◽  
Fengjun Zhang

A novel poly(4-iodobutoxylmethylsiloxane) (PIBMS) water repellent with high reaction activity was synthesized using poly(hydromethylsiloxane) (PHMS), methyl iodide (MeI) and tetrahydrofuran (THF) in the presence of a catalytic amount of PdCl2. The new chemical active group of PIBMS could covalently bond to the cotton fabric. It is conducive to improve the washability of treated cotton fabric. The structure of PIBMS was confirmed by the FT-IR and 1H NMR spectra. The PIBMS was applied onto cotton fabric by a pad-dry-cure process. PIBMS was applied to cotton fabrics and the effect of the process parameters on water repellent performance was studied. The morphology of PIBMS polymer film on the cotton fabric was investigated by SEM. The water repellency of treated cotton fabrics before and after vigorous washes was compared. The results show that the water repellent grade of cotton fabric treated with PIBMS was 90. The contact angle of the treated cotton fabric was 136.94°, which was higher than that of the untreated cotton fabric. The water repellent grade of treated cotton fabric was still as high as 80 after 20 times washing. The tear strength and the tensile strength of cotton fabric significantly increased after PIBMS treatment. The air permeability and the water vapor permeability of treated cotton fabric were slightly lower than those of untreated cotton fabrics.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1829 ◽  
Author(s):  
Chaohong Dong ◽  
Ling Sun ◽  
Xingbo Ma ◽  
Zhou Lu ◽  
Pengshuang He ◽  
...  

A novel linear α, ω-di (chloro phosphoramide)-terminated polydimethylsiloxane (CPN-PDMS) was successfully synthesized and utilized as a formaldehyde-free water-repellent and flame-retardant for cotton fabrics. The flame retardancy of treated cotton fabrics was estimated by limiting oxygen index (LOI) test, vertical flammability test, and cone calorimetry test. The cotton fabrics treated with 350 g/L CPN-PDMS obtained excellent flame retardancy with an LOI value of 30.6% and the char length was only 4.3 cm. Combustion residues were studied using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analysis. Results show that CPN-PDMS can effectively enhance water repellency and fire resistance of cotton fabrics. Furthermore, the breaking strength test and the whiteness test strongly prove that the tensile strength and whiteness of the treated cotton fabrics were slightly lower than that of the pure cotton fabrics. The wash stability test showed that after 30 laundering cycles, the treated cotton fabrics still had an LOI value of 28.5% and a water-repellent effect of grade 80, indicating that CPN-PDMS was an excellent washing durability additive. In summary, these property enhancements of treated cotton fabrics were attributed to the synergistic effect of silicon-phosphorus-nitrogen elements in CPN-PDMS.


2012 ◽  
Vol 455-456 ◽  
pp. 1210-1216
Author(s):  
Zheng Rong Li ◽  
Wei Ping Tu ◽  
Ke Jie Fu ◽  
Jie Zou

A novel polymer APFC containing quaternary ammonium and perfluoroalkyl groups was designed and prepared by emulsion polymerization using interfacial redox initiator system, the average size of the emulsion particles was about 103nm, APFC was applied on cotton fabrics to show the antimicrobial activities and optimum water and oil repellency by a pad-dry-cure process, the water repellency scores and oil repellency ratings of the cotton fabrics finished with APFC can reach 100 and 6, respectively. We evaluated the efficacy of the antimicrobial activity of cotton fabric finished with APFC , the antimicrobial test result of the finished cotton fabric showed a 97.4% reduction in the number ofStaphylococcus aureus(ATCC6358) and a 90.5% reduction in the number ofEscherichia coli(ATCC8099).


2017 ◽  
Vol 48 (2) ◽  
pp. 521-535 ◽  
Author(s):  
Amjed Javid ◽  
Khurram Iftikhar ◽  
Munir Ashraf ◽  
Abdur Rehman ◽  
Kashif Iqbal ◽  
...  

Inducing multifunctionality is the need of the products used in diverse environments. Here, polyurethane-based water repellent, flame retardant and antibacterial coatings are fabricated on cotton fabrics which sequentially involve the deposition of coating through knife coating, drying and curing of coated fabric. Taguchi design has been used to optimize the parameters for enhanced water repellency, flame retardancy and antibacterial activity. When applied individually, the performance characteristics enhance with the increase in concentration of respective finishing agent. However, a different behaviour was shown by the coated fabric when applied all the finishing agents simultaneously. Taguchi design enabled the monitoring of interdependency of different concentrations of chemicals and finding the most influencing parameters for efficient performance of coated fabrics.


2018 ◽  
Vol 1 ◽  
pp. 251522111878605
Author(s):  
Anil Kumar Jain ◽  
Addisu Ferede Tesema ◽  
Adane Haile

An attempt has been made to develop multifunctional cotton fabric, possessing water repellent, stain repellent, shrink resistance and quick dry properties using fluorocarbon resin. The hydrophobicity of cotton fabric was determined by carrying out water repellency test, taking scanning electron microscopic photographs and measuring water contact angle. The durability of hydrophobicity of cotton was tested till 20 washes and found satisfactory. Oil repellency was determined employing hydrocarbons resistance test. The air permeability of cotton fabric was also determined keeping in view the impact on breathability of treated cotton and was found quite good. The untreated and treated cotton fabric was subjected to repeated domestic laundry condition, and shrinkage was measured, which indicated excellent shrink resistance behaviour because of its water repelling characteristic. This hydrophobicity of cotton also added to its quick dry behaviour even at low temperature and high relative humidity. The physical properties of treated dyed cotton fabric samples were compared with untreated, and no significant changes were observed in colour fastness to washing, rubbing, perspiration and light. The tensile and tear strength showed good retention even at higher concentration of fluorocarbon resin. This work is of great industrial importance for textile products used in home textiles. The textile industry can fetch more export earnings by doing multiple value addition using the same chemical. The work reported in the literature is about using fluorocarbon and developing water- and oil-repellent fabrics. In the present work, apart from water and oil repellency, shrink resistance and quick dry behaviour of cotton textile has also been established using same fluorocarbon because of hydrophobicity imparted to cotton.


RSC Advances ◽  
2019 ◽  
Vol 9 (54) ◽  
pp. 31357-31369 ◽  
Author(s):  
Xiaoli Liu ◽  
Xiaobin Zou ◽  
Zhen Ge ◽  
Wenguo Zhang ◽  
Yunjun Luo

In the fabric finishing field, the water repellents have received increasing interest in recent years and the development of a fluorine-free water repellent has become an attractive prospect.


Author(s):  
David Quéré ◽  
Mathilde Reyssat

Superhydrophobic materials recently attracted a lot of attention, owing to the potential practical applications of such surfaces—they literally repel water, which hardly sticks to them, bounces off after an impact and slips on them. In this short review, we describe how water repellency arises from the presence of hydrophobic microstructures at the solid surface. A drop deposited on such a substrate can float above the textures, mimicking at room temperature what happens on very hot plates; then, a vapour layer comes between the solid and the volatile liquid, as described long ago by Leidenfrost. We present several examples of superhydrophobic materials (either natural or synthetic), and stress more particularly the stability of the air cushion—the liquid could also penetrate the textures, inducing a very different wetting state, much more sticky, due to the possibility of pinning on the numerous defects. This description allows us to discuss (in quite a preliminary way) the optimal design to be given to a solid surface to make it robustly water repellent.


2012 ◽  
Vol 549 ◽  
pp. 733-736
Author(s):  
Xiao Mian Chen ◽  
Jing Jing Shi ◽  
Hong Sha Su ◽  
Chun Ting Lin ◽  
En Long Yang

The catalytic properties of nano-TiO2 modified fabric suits the demand for self-cleaning in recent years. In this paper, advanced and innovative technology were used to synthesize water sol of titanium dioxide photocatalyst with high catalytic activity for fabric finishing. The wear behavior, antibacterial property and water repellency of treated and untreated fabric were tested. Results indicate that finishing and washing of the titanium dioxide had no effect on wear behavior; finished and washed fabric has a certain antibacterial and water repellent properties.


Sign in / Sign up

Export Citation Format

Share Document