scholarly journals A Numerical Simulation Method for the One-Step Compression-Stamping Process of Continuous Fiber Reinforced Thermoplastic Composites

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3237
Author(s):  
Lu Chen ◽  
Tianzhengxiong Deng ◽  
Helezi Zhou ◽  
Zhigao Huang ◽  
Xiongqi Peng ◽  
...  

Continuous fiber reinforced thermoplastic (CFRTP) composites have many advantages, such as high strength, high stiffness, shorter cycle, time and enabling the part consolidation of structural components. However, the mass production of the CFRTP parts is still challenging in industry and simulations can be used to better understand internal molding mechanisms. This paper proposes a three-dimensional simulation method for a one-step compression-stamping process which can conduct thermoplastic compression molding and continuous fiber reinforced thermoplastic composite stamping forming in one single mold, simultaneously. To overcome the strongly coupled non-isothermal moving boundary between the polymer and the composites, arbitrary Lagrangian–Eulerian based Navier–Stokes equations were applied to solve the thermoplastic compression, and a fiber rotation based objective stress rate model was used to solve for the composite stamping. Meanwhile, a strongly coupled fluid structure interaction framework with dual mesh technology is proposed to address the non-isothermal moving boundary issue between the polymer and the composites. This simulation method was compared against the experimental results to verify its accuracy. The polymer flow fronts were measured at different molding stages and the error between simulation and experiment was within 3.5%. The final composites’ in-plane deformation error was less than 2.5%. The experiment shows that this work can accurately simulate the actual molding process.

2020 ◽  
Vol 40 (3) ◽  
pp. 256-266
Author(s):  
Tim Deringer ◽  
Dietmar Drummer

AbstractA new process, called thermoset in-mold forming, for combining thermoset master forming and thermoset forming in one mold is in development. A pre-impregnated continuous-fiber reinforced sheet based on epoxy (prepreg) is formed in the injection molding machine, followed by instantaneous overmolding of a short-fiber reinforced epoxy compound in one step. Compared with conventional processes in which thermoset injection molding, prepreg compression molding, and hence curing of the materials are separated, the new process allows for the combination in one step and simultaneous curing of both components. The result is a hybrid component, which features a continuous-fiber reinforced part for higher mechanical performance and a short-fiber reinforced part with high design freedom for integration of additional functions. For a successful combination of both materials in one process, it is essential to investigate the bond strength between them in relation to the processing parameters and their influence on the degree of cure. This paper analyzes the influence of the mold temperature in this process on curing degree, bond strength, and the processing viscosity.


2016 ◽  
Vol 24 (3) ◽  
pp. 675-690 ◽  
Author(s):  
Feng Ren ◽  
Yang Yu ◽  
Jianjun Yang ◽  
Chunling Xin ◽  
Yadong He

2021 ◽  
Vol 216 ◽  
pp. 108859
Author(s):  
Dong-Jun Kwon ◽  
Neul-Sae-Rom Kim ◽  
Yeong-Jin Jang ◽  
Hyun Ho Choi ◽  
Kihyun Kim ◽  
...  

2008 ◽  
Vol 22 (31n32) ◽  
pp. 6057-6063
Author(s):  
YI-DONG BAO ◽  
WEN-LIANG CHEN ◽  
HONG WU

A simplified one-step inverse analysis of sheet metal forming is a suitable tool to simulate the bending forming since the deformation path of bending forming is an approximately proportion one. A fast spring-back simulation method based on one-step analysis is proposed. First, the one-step inverse analysis is applied to obtain the stress distribution at the final stage of bending. Then, the unloading to get a spring back is simulated by LS-DYNA implicit solver. These processes are applied to the unconstrained cylindrical bending and the truck member rail. The spring-back and member rail widths at the several key sections are compared with experimental ones. It is well demonstrated that the proposed method is an effective way to predict the spring-back by unloading after bending process.


Sign in / Sign up

Export Citation Format

Share Document