scholarly journals Dynamic Mechanical Properties and Thermal Properties of Longitudinal Basalt/Woven Glass Fiber Reinforced Unsaturated Polyester Hybrid Composites

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3343 ◽  
Author(s):  
Nur Izzah Nabilah Haris ◽  
R. A. Ilyas ◽  
Mohamad Zaki Hassan ◽  
S. M. Sapuan ◽  
Atiqah Afdzaluddin ◽  
...  

This study investigates the mechanical, thermal, and chemical properties of basalt/woven glass fiber reinforced polymer (BGRP) hybrid polyester composites. The Fourier transform infrared spectroscopy (FTIR) was used to explore the chemical aspect, whereas the dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA) were performed to determine the mechanical and thermal properties. The dynamic mechanical properties were evaluated in terms of the storage modulus, loss modulus, and damping factor. The FTIR results showed that incorporating single and hybrid fibers in the matrix did not change the chemical properties. The DMA findings revealed that the B7.5/G22.5 composite with 7.5 wt% of basalt fiber (B) and 22.5 wt% of glass fiber (G) exhibited the highest elastic and viscous properties, as it exhibited the higher storage modulus (8.04 × 109 MPa) and loss modulus (1.32 × 109 MPa) compared to the other samples. All the reinforced composites had better damping behavior than the neat matrix, but no further enhancement was obtained upon hybridization. The analysis also revealed that the B22.5/G7.5 composite with 22.5 wt% of basalt fiber and 7.5 wt% of glass fiber had the highest Tg at 70.80 °C, and increased by 15 °C compared to the neat matrix. TMA data suggested that the reinforced composites had relatively low dimensional stabilities than the neat matrix, particularly between 50 to 80 °C. Overall, the hybridization of basalt and glass fibers in unsaturated polyester formed composites with higher mechanical and thermal properties than single reinforced composites.

Author(s):  
MK Gupta

The aim of the present study is to investigate the dynamic mechanical and thermal properties of hybrid jute/sisal fibre reinforced epoxy composites. The hybrid composites were prepared by hand layup technique having total fibre loading of 30% by weight with different weight ratios of jute and sisal fibres. Dynamic mechanical properties such as storage modulus ([Formula: see text]), loss modulus ([Formula: see text]) and damping ([Formula: see text]) were investigated in the temperature range of 30–200 ℃. The thermal stability of the prepared composites was studied using thermogravimetric analysis. Other thermal properties such as glass transition temperature ( Tg), crystallization temperature ( Tc) and decomposition temperature ( Td) were also obtained by differential scanning calorimetry. The results indicated a positive effect of hybridization in terms of increase in dynamic mechanical and thermal properties. Storage modulus, loss modulus and Tg were found to be higher for hybrid composite having a higher percentage of jute fibres.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 700
Author(s):  
Muhamad Hasfanizam Mat Yazik ◽  
Mohamed Thariq Hameed Sultan ◽  
Mohammad Jawaid ◽  
Abd Rahim Abu Talib ◽  
Norkhairunnisa Mazlan ◽  
...  

The aim of the present study has been to evaluate the effect of hybridization of montmorillonite (MMT) and multi-walled carbon nanotubes (MWCNT) on the thermal and viscoelastic properties of shape memory epoxy polymer (SMEP) nanocomposites. In this study, ultra-sonication was utilized to disperse 1%, 3%, and 5% MMT in combination with 0.5%, 1%, and 1.5% MWCNT into the epoxy system. The fabricated SMEP hybrid nanocomposites were characterized via differential scanning calorimetry, dynamic mechanical analysis, and thermogravimetric analysis. The storage modulus (E’), loss modulus (E”), tan δ, decomposition temperature, and decomposition rate, varied upon the addition of the fillers. Tan δ indicated a reduction of glass transition temperature (Tg) for all the hybrid SMEP nanocomposites. 3% MMT/1% MWCNT displayed best overall performance compared to other hybrid filler concentrations and indicated a better mechanical property compared to neat SMEP. These findings open a way to develop novel high-performance composites for various potential applications, such as morphing structures and actuators, as well as biomedical devices.


Sign in / Sign up

Export Citation Format

Share Document