scholarly journals Preparation and Characterization of Polybutylene Succinate Reinforced with Pure Cellulose Nanofibril and Lignocellulose Nanofibril Using Two-Step Process

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3945
Author(s):  
Azelia Wulan Cindradewi ◽  
Rajkumar Bandi ◽  
Chan-Woo Park ◽  
Ji-Soo Park ◽  
Eun-Ah Lee ◽  
...  

This study reports the preparation of a polybutylene succinate (PBS) film reinforced with pure cellulose nanofibril (PCNF) and lignocellulose nanofibril (LCNF) by a two-step process that consists of solvent dispersion and twin-screw extrusion. Compared to the conventional one-step process, this method offered improved mechanical properties. The addition of 5% CNF increased the tensile properties up to 18.8%. Further, the effect of the lignin content was also studied by using LCNF as a reinforcement. The LCNF was prepared with and without a deep eutectic solvent (DES) pretreatment to gain LCNF with a lignin content that varied between 5, 19, and 30%. The mechanical properties results show that a 5% addition of LCNF to the PBS matrix increased its tensile strength and elastic modulus. Further, the morphological and thermal properties of the composites were also studied in detail.

2021 ◽  
Vol 36 (2) ◽  
pp. 219-227
Author(s):  
P. Saiprasit ◽  
A. K. Schlarb

Abstract Poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT)-based nanocomposites filled with 1 vol.% silicon dioxide nanoparticles (nano-SiO2) were prepared using a co-rotating twin-screw extruder and injection molding. The nanocomposites with various blending sequences were investigated using PLA-based and PBAT-based nanocomposite masterbatches. Morphology of the PLA/PBAT/SiO2 nanocomposites was examined using a scanning electron microscope (SEM) and a focused ion beam (FIB) SEM. It is found that the nano-SiO2 locates in the original polymer phase, in which it is firstly incorporated in the masterbatch process, as well as at the interface between the two polymers. However, as the residence time in the extrusion process increases, the nanoparticles migrate from the original phase to the interface, governed by the thermodynamic driving force. The best optimization of mechanical properties is achieved by using the PBAT-based masterbatches with a one-step process or short residence time. The processing history, therefore, has a tremendous impact on the final properties of the resulting materials.


2012 ◽  
Vol 204-208 ◽  
pp. 4088-4092
Author(s):  
Ming Ming Zhang ◽  
Xiao Huan Liu ◽  
Chun Peng Wang ◽  
Li Wei Jin

The blend composite materials of bio-ethanol byproduct-Poly(lactic acid) (PLA) were produced by a twin-screw extrusion process. Effects of bio-ethanol byproduct (BEB) contents and different compatibilizers on properties of composite materials were investigated. The research showed that with the increase of contents of bio-ethanol byproduct, the mechanical properties decreased. The mechanical properties of composites were improved by adding the compatibilizers, especially the polypropylene grafted maleic anhydride (PP-MAH). When the PP-MAH content was 2.5%, the mechanical properties of the composite materials were superior to others.


2014 ◽  
Vol 1070-1072 ◽  
pp. 100-106
Author(s):  
Wen Zhu Ouyang ◽  
Yong Huang

In this study, cellulolytic enzyme lignin (CEL) was blended with polycaprolactone (PCL) by twin-screw extrusion and injection molding. The thermal, mechanical properties and the morphology of the PCL/CEL blends were investigated as a function of CEL content. The results showed that the CEL in the blends acting as nucleus accelerated the crystallization of PCL when CEL was not more than 10 wt%, but retarded PCL to crystallize with more CEL addition. Thermogravimetry analysis (TGA) revealed that the thermal stability of the PCL/CEL blends was almost unaffected by increasing CEL content. Mechanical test showed that, although the elongation at break and the impact strength were decreased, the strength and the modulus of the PCL/CEL blends were significantly higher than those of the neat PCL. Scanning electron microscopy (SEM) observations indicated that the CEL and the PCL were in good miscibility and there was a good adhesion at the interface of the CEL filler and the PCL matrix, suggesting that CEL could be potential filler used in PCL-based materials to reduce the cost of the friendly material, whereas increased its strength and modulus.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2974
Author(s):  
Ji-Soo Park ◽  
Song-Yi Han ◽  
Rajkumar Bandi ◽  
Eun-Ah Lee ◽  
Azelia-Wulan Cindradewi ◽  
...  

Lignocellulose nanofibrils (LCNFs) with different lignin contents were prepared using choline chloride (ChCl)/lactic acid (LA), deep eutectic solvent (DES) pretreatment, and subsequent mechanical defibrillation. The LCNFs had a diameter of 15.3–18.2 nm, which was similar to the diameter of commercial pure cellulose nanofibrils (PCNFs). The LCNFs and PCNFs were wet-spun in CaCl2 solution for filament fabrication. The addition of sodium alginate (AL) significantly improved the wet-spinnability of the LCNFs. As the AL content increased, the average diameter of the composite filaments increased, and the orientation index decreased. The increase in AL content improved the wet-spinnability of CNFs but deteriorated the tensile properties. The increase in the spinning rate resulted in an increase in the orientation index, which improved the tensile strength and elastic modulus.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Kittithorn Lertphirun ◽  
Kawee Srikulkit

Hydrophobic cellulose/SiO2 composites were prepared. Resultant hydrophobic cellulose/SiO2 composites were melt mixed with PLA using a twin-screw extruder to obtain 10 wt% masterbatch. Again, 10 wt% masterbatch was melt mixed with virgin PLA, resulting in PLA containing hydrophobic cellulose/SiO2 at various contents (1 wt%, 3 wt%, and 5 wt%) using a twin-screw extruder (barrel zone temperature: 150/160/170/180/190°C (die zone)). Injection-molded samples were prepared for mechanical properties evaluation. Results showed that poor mechanical properties found at low percent loadings were associated with a significant depolymerization of masterbatch composition due to twice thermal treatments. Note that 10 wt% masterbatch was subjected to injection molding straight away in a one-step process. Results showed that 10 wt% hydrophobic cellulose/SiO2/PLA composites exhibited mechanical properties equivalent to neat PLA. Importantly, the addition of hydrophobic cellulose/SiO2 at high percent loading could favor landfill degradation of PLA via water absorption ability of cellulose. It was expected that enzymatic hydrolysis of cellulose resulted in the formation of lactic acid and silicic acid which consequently catalyzed the hydrolytic degradation (acid hydrolysis) of PLA. The hydrolytic degradation produced carboxylic acid end group which further accelerated the degradation rate.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 259
Author(s):  
Hui Dong ◽  
Jing Zhong ◽  
Avraam I. Isayev

The compounding of waste EPDM from postindustrial scrap with polypropylene (PP) is a possible way to manufacture thermoplastic elastomers to solve a significant environmental problem. Accordingly, the present study considers the one-step (OS), two-step (TS), and dynamic revulcanization (DR) compounding methods for the manufacturing of PP/EPDM blends at different ratios of components with the aid of an ultrasonic twin-screw extruder (TSE) at various ultrasonic amplitudes. In the OS method, PP and waste EPDM particles were directly compounded using TSE with and without ultrasonic treatment. In the TS and DR methods, the waste EPDM particles were fed into the TSE and devulcanized without and with ultrasonic treatment. Then, in the TS method the devulcanized EPDM was compounded with PP using TSE without the imposition of ultrasound. In the DR method, the devulcanized EPDM after compounding with curatives was mixed with PP and dynamically revulcanized without the imposition of ultrasound in TSE. The die pressure during compounding was recorded and correlated with the rheological properties of compounds. The mechanical properties of the PP/EPDM blends obtained in the OS and TS methods did not show any improvement with ultrasonic treatment. In the DR method, all the PP/EPDM blends showed a significant increase in the tensile strength and elongation with ultrasonic amplitude and a slight decrease in the Young’s modulus. In particular, a tensile strength of 30 MPa and an elongation at break of 400% were achieved at an ultrasonic amplitude of 13 μm for the PP/EPDM blend at a ratio of 75/25. The complex viscosity, storage, and loss moduli of dynamically revulcanized PP/EPDM blends increased with the ultrasonic amplitude while the loss tangent decreased. At the same time, the results for the blends obtained by the OS and TS methods showed an opposite trend in the dynamic property behavior with the ultrasonic amplitude. Optical micrographs indicated that the blends obtained by the DR method at an ultrasonic treatment at 13 μm showed the lowest sizes of dispersed revulcanized EPDM particles in the PP matrix, leading to the excellent performance of these thermoplastic elastomers.


2011 ◽  
Vol 24 (6) ◽  
pp. 755-766 ◽  
Author(s):  
S. Joseph ◽  
V.A. Bambole ◽  
P.A. Mahanwar

Carbon nanoplatelet and nanoalumina reinforced PEEK nanocomposites were fabricated by twin-screw extrusion followed by injection molding. The effect of the filler loading on mechanical properties, morphology, dielectric strength, and thermal stability of the composites has been analyzed. The mechanical properties were found to increase with nanoplatelet content up to 1% loading (optimum filler content) and after that, due to agglomeration of filler, slight decrease in properties were observed. For alumina-filled systems mechanical properties increased with increasing filler content due to the well-dispersed fillers in the composites. The modulus and toughness of alumina-filled composites were higher than platelet-filled composites.


2017 ◽  
Vol 24 (1) ◽  
pp. 35-40
Author(s):  
Pouria Rezaee Niaraki ◽  
Ahmad Jahan Latibari ◽  
Arash Rashno ◽  
Ajang Tajdini

AbstractThe effect of fiber characteristics from old corrugated container (OCC) paper on the strength properties of OCC/polypropylene composites was evaluated. Fibers with different contents of lignin (2.8%, 3.8%, 5.3%, and 7%) were produced using soda pulping. Wettability, tear, and tensile strength of the fibers were measured as the indication factors to assess the strength of reinforcing component in the composites. The weight portions of the OCC fibers, polypropylene, and maleic anhydride-grafted polypropylene (MAPP) were selected at 20%, 77%, and 3% of the total weight of the composite, respectively. The composite compounds were formed using a counter-rotating twin screw extruder, and the specimens were made in an injection molding machine. The interaction of fiber characteristics and fiber lignin content on the mechanical properties of composite was investigated. The results revealed that with lower fiber lignin content, both flexural and tensile properties were increased. Consequently, by forming better fiber dispersion and by reducing stress regions in the composite, impact strength was also improved. Lower lignin content resulted in better mechanical properties than fiber characteristics.


Sign in / Sign up

Export Citation Format

Share Document