scholarly journals Application of a Conducting Poly-Methionine/Gold Nanoparticles-Modified Sensor for the Electrochemical Detection of Paroxetine

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3981
Author(s):  
Saedah R. Al-Mhyawi ◽  
Riham K. Ahmed ◽  
Rasha M. El Nashar

This work demonstrates a facile electropolymerization of a dl-methionine (dl-met) conducting polymeric film on a gold nanoparticle (AuNPs)-modified glassy carbon electrode (GCE). The resulting sensor was successfully applied for the sensitive detection of paroxetine·HCl (PRX), a selective serotonin (5-HT) reuptake inhibitor (SSRIs), in its pharmaceutical formulations. The sensor was characterized morphologically using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM) and electrochemical techniques such as differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The proposed sensor, poly (dl-met)/AuNPs-GCE, exhibited a linear response range from 5 × 10−11 to 5 × 10−8 M and from 5 × 10−8 to 1 × 10−4 M using DPV with lowest limit of detection (LOD = 1 × 10−11 M) based on (S/N = 3). The poly (dl-met)/AuNPs-GCE sensor was successfully applied for PRX determination in three different pharmaceutical formulations with percent recoveries between 96.29% and 103.40% ± SD (±0.02 and ±0.58, respectively).

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Syeda Aqsa Batool Bukhari ◽  
Habib Nasir ◽  
Lujun Pan ◽  
Mehroz Tasawar ◽  
Manzar Sohail ◽  
...  

AbstractNon-enzymatic electrochemical detection of catechol (CC) and hydroquinone (HQ), the xenobiotic pollutants, was carried out at the surface of novel carbon nanocoils/zinc-tetraphenylporphyrin (CNCs/Zn-TPP) nanocomposite supported on glassy carbon electrode. The synergistic effect of chemoresponsive activity of Zn-TPP and a large surface area and electron transfer ability of CNCs lead to efficient detection of CC and HQ. The nanocomposite was characterized by using FT-IR, UV/vis. spectrophotometer, SEM and energy dispersive X-ray spectroscopy (EDS). Cyclic voltammetry, differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy were used for the electrochemical studies. CNCs/Zn-TPP/GCE nanosensor displayed a limit of detection (LOD), limit of quantification (LOQ) and sensitivity for catechol as 0.9 µM, 3.1 µM and 0.48 µA µM−1 cm−2, respectively in a concentration range of 25–1500 µM. Similarly, a linear trend in the concentration of hydroquinone detection was observed between 25 and 1500 µM with an LOD, LOQ and sensitivity of 1.5 µM, 5.1 µM and 0.35 µA µM−1 cm−2, respectively. DPV of binary mixture pictured well resolved peaks with anodic peak potential difference, ∆Epa(CC-HQ), of 110 mV showing efficient sensing of CC and HQ. The developed nanosensor exhibits stability for up to 30 days, better selectivity and good repeatability for eight measurements (4.5% for CC and 5.4% for HQ).


2019 ◽  
Vol Vol. 14, No.1 ◽  
pp. 5-14 ◽  
Author(s):  
Anastasiya Tkachenko ◽  
Mykyta Onizhuk ◽  
Oleg Tkachenko ◽  
Leliz T. Arenas ◽  
Edilson V. Benvenutt ◽  
...  

In the present study, an electrochemical sensor based on the electrode (SiMImCl/C) consisting of graphite and silica, grafted with 1-n-propyl-3-methylimidazolium chloride was used for ascorbic acid (AA) quantification in pharmaceuticals and food formulations. Cyclic voltammetry and electrochemical impedance spectroscopy were applied for electrochemical characterization of the SiMImCl/C electrode. The cyclic voltammetry study revealed that the oxidation of AA on this electrode is an irreversible process, realized by adsorption and diffusion limited step. The differential pulse voltammetry was applied to develop a procedure for the AA determination. The linear range was found to be 0.3–170 μmol L-1 and the limit of detection – 0.1 μmol L-1. The proposed SiMImCl/C electrode has long term stability and does not show electrochemical activity towards the analytes, which commonly coexist with AA. The sensor was successfully used for quantification of AA in food and pharmaceutical formulations.


2020 ◽  
Vol 18 (4) ◽  
pp. 253-258
Author(s):  
Gamze Erdoğdu

A sensitive and simple modified sensor was prepared by electrodeposition of diphenylamine sulfonic acid (DPSA) to the glassy carbon electrode surface by cyclic voltammetry (CV) technique. The electrooxidation of epinephrine (EP) was accomplished by CV and differential pulse voltammetry at poly(DPSA) modified sensor. As a result of the findings, the current values were enhanced and both substances were separated at the modified sensor compared to the bare electrode. There was linearly between the oxidation current and concentration of EP from 0.2 to 100 μM in phosphate buffer solution at pH 7.0. The limit of detection was 5.0 nM and the sensitivity was 0.4205 μA/μM. The determination of EP was successfully and satisfactorily carried out in real samples such as human blood serum and urine at the poly(DPSA) sensor. To the best knowledge of this work, this is the first study that detect the EP in the presence of ascorbic acid at poly(DPSA) sensor in the literature.


2020 ◽  
Vol 18 (10) ◽  
pp. 739-744
Author(s):  
Gamze Erdogdu

A sensitive and simple modified sensor was prepared by electrodeposition of diphenylamine sulfonic acid (DPSA) to the glassy carbon electrode surface by cyclic voltammetry (CV) technique. The electrooxidation of Acetaminophen (AC) was accomplished by CV and differential pulse voltammetry at poly(DPSA) modified sensor. As a result of the findings, the current values were enhanced and both substances were separated at the modified sensor compared to the bare electrode. There was linearly between the oxidation current and concentration of AC from 0.0 to 100 μM in phospate buffer solution at pH 7.0. The limit of detection was 3.0 nM and the sensitivity was 0.4108 μA/μM. The determination of AC was successfully and satisfactorily carried out in real samples such as human blood serum and urine at the poly(DPSA) sensor. To the best knowledge of this work, this is the first study that detect the AC in the presence of ascorbic acid at poly(DPSA) sensor in the literature.


2006 ◽  
Vol 6 (1) ◽  
pp. 91-94 ◽  
Author(s):  
Gang Ping ◽  
Gang Lv ◽  
Sebastian Gutmann ◽  
Chen Chen ◽  
Renyun Zhang ◽  
...  

The interaction between procaine hydrochloride and DNA/DNA bases in the absence and presence of cadmium sulfide (CdS) nanoparticles has been explored in this study by using differential pulse voltammetry, atomic force microscopy (AFM) and so on, which illustrates the different binding behaviors of procaine hydrochloride with different DNA bases. The results clearly indicate that the binding of purines to procaine hydrochloride is stronger than that of pyrimidines and the binding affinity is in the order of G > A > T > C. In addition, it was observed that the presence of CdS nanoparticles could remarkably enhance the probing sensitivity for the interaction between procaine hydrochloride and DNA/DNA bases. Furthermore, AFM study illustrates that procaine hydrochloride can bind to some specific sites of DNA chains, which indicates that procaine hydrochloride may interact with some special sequences of DNA.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2857 ◽  
Author(s):  
Sunil K. Arya ◽  
Pedro Estrela

An electrochemical enzyme-linked immunosorbent assay (ELISA) biosensor platform using electrochemically prepared ~11 nm thick carboxylic functionalized popypyrrole film has been developed for bio-analyte measurement in undiluted serum. Carboxyl polypyrrole (PPy-COOH) film using 3-carboxy-pyrrol monomer onto comb-shaped gold electrode microarray (Au) was prepared via cyclic voltammetry (CV). The prepared Au/PPy-COOH was then utilized for electrochemical ELISA platform development by immobilizing analyte-specific antibodies. Tumor necrosis factor-alpha (TNF-α) was selected as a model analyte and detected in undiluted serum. For enhanced performance, the use of a polymeric alkaline phosphatase tag was investigated for the electrochemical ELISA. The developed platform was characterized at each step of fabrication using CV, electrochemical impedance spectroscopy and atomic force microscopy. The bioelectrodes exhibited linearity for TNF-α in the 100 pg/mL–100 ng/mL range when measured in spiked serum, with limit of detection of 78 pg/mL. The sensor showed insignificant signal disturbance from serum proteins and other biologically important proteins. The developed platform was found to be fast and specific and can be applicable for testing and measuring various biologically important protein markers in real samples.


2020 ◽  
Vol 16 (5) ◽  
pp. 591-600
Author(s):  
Şevket Zişan Yağcı ◽  
Ebru Kuyumcu Savan ◽  
Gamze Erdoğdu

Objective: In this study, it was aimed to prepare an electrochemical sensor capable of assigning Norepinephrine in the presence of an interference such as ascorbic acid. Methods: A sensitive modified sensor was prepared by electrodeposition of p-aminobenzenesulfonic acid (p-ABSA) to the glassy carbon electrode by cyclic voltammetry. The electrooxidation of Norepinephrine was accomplished by cyclic and differential pulse voltammetry. Results: The current values were enhanced and the peak potentials of Norepinephrine and ascorbic acid were separated at the sensor compared to the bare electrode. There was linearity between the oxidation current and concentration of Norepinephrine ranging from 0.5 to 99.8 μM in phosphate buffer solution at pH 7.0. The limit of detection was 10.0 nM and the sensitivity was 0.455 μA/μM. Conclusion: The determination of Norepinephrine was successfully performed in real samples such as blood serum and urine at the poly (p-ABSA) sensor. To the best of our knowledge, this is the first study to detect Norepinephrine in the presence of ascorbic acid at poly (p-ABSA) modified sensor in the literature.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 416
Author(s):  
Zari Tehrani ◽  
Hina Yaqub Abbasi ◽  
Anitha Devadoss ◽  
Jonathan Edward Evans ◽  
Owen James Guy

Electrochemical biosensors using carbon-based electrodes are being widely developed for the detection of a range of different diseases. Since their sensitivity depends on the surface coverage of bioreceptor moieties, it necessarily depends on the surface coverage of amine precursors. Electrochemical techniques, using ferrocene carboxylic acid as a rapid and cheap assay, were used to assess the surface coverage of amino-phenyl groups attached to the carbon electrode. While the number of electrons transferred in the first step of diazotisation indicated a surface coverage of 8.02 ± 0.2 × l0−10 (mol/cm2), and those transferred in the second step, a reduction of nitrophenyl to amino-phenyl, indicated an amine surface coverage of 4–5 × l0−10 (mol/cm2), the number of electrons transferred during attachment of the amine coupling assay compound, ferrocene carboxylic acid, indicated a much lower available amine coverage of only 2.2 × l0−11 (mol/cm2). Furthermore, the available amine coverage was critically dependent upon the number of cyclic voltammetry cycles used in the reduction, and thus the procedures used in this step influenced the sensitivity of any subsequent sensor. Amine coupling of a carboxyl terminated anti-beta amyloid antibody specific to Aβ(1-42) peptide, a potential marker for Alzheimer’s disease, followed the same pattern of coverage as that observed with ferrocene carboxylic acid, and at optimum amine coverage, the sensitivity of the differential pulse voltammetry sensor was in the range 0–200 ng/mL with the slope of 5.07 µA/ng·mL−1 and R2 = 0.98.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. Chetankumar ◽  
B. E. Kumara Swamy ◽  
S. C. Sharma ◽  
S. A. Hariprasad

AbstractIn this proposed work, direct green 6 (DG6) decorated carbon paste electrode (CPE) was fabricated for the efficient simultaneous and individual sensing of catechol (CA) and hydroquinone (HY). Electrochemical deeds of the CA and HY were carried out by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at poly-DG6-modfied carbon paste electrode (Po-DG6-MCPE). Using scanning electron microscopy (SEM) studied the surface property of unmodified CPE (UCPE) and Po-DG6-MCPE. The decorated sensor displayed admirable electrocatalytic performance with fine stability, reproducibility, selectivity, low limit of detection (LLOD) for HY (0.11 μM) and CC (0.09 μM) and sensor process was originated to be adsorption-controlled phenomena. The Po-DG6-MCPE sensor exhibits well separated two peaks for HY and CA in CV and DPV analysis with potential difference of 0.098 V. Subsequently, the sensor was practically applied for the analysis in tap water and it consistent in-between for CA 93.25–100.16% and for HY 97.25–99.87% respectively.


Sign in / Sign up

Export Citation Format

Share Document