scholarly journals Analysis of the Mechanical and Preforming Behaviors of Carbon-Kevlar Hybrid Woven Reinforcement

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4088
Author(s):  
Zhengtao Qu ◽  
Sasa Gao ◽  
Yunjie Zhang ◽  
Junhong Jia

Carbon-Kevlar hybrid reinforcement is increasingly used in the domains that have both strength and anti-impact requirements. However, the research on the preforming behaviors of hybrid reinforcement is very limited. This paper aims to investigate the mechanical and preforming behaviors of carbon-Kevlar hybrid reinforcement. The results show that carbon-Kevlar hybrid woven reinforcement presents a unique “double-peak” tensile behavior, which is significantly different from that of single fiber type reinforcement, and the in-plane shear deformation demonstrates its large in-plane shear deformability. Both the tensile and in-plane shear behaviors present insensitivity to loading rate. In the preforming process, yarn slippage and out-of-plane yarn buckling are the two primary types of defects. Locations of these defects are closely related to the punch shape and the initial yarn direction. These defects cannot be alleviated or removed by just increasing the blank holder pressure. In the multi-layer preforming, the compaction between the plies and the friction between yarns simultaneously affect the quality of final preforms. The defect location of multi-layer preforms is the same as that of single-layer, while its defect range is much wider. The results found in this paper could provide useful guidance for the engineering application and preforming modeling of hybrid woven reinforcement.

2019 ◽  
Vol 20 (4) ◽  
pp. 407
Author(s):  
Ahmad Rashed Labanieh ◽  
Christian Garnier ◽  
Pierre Ouagne ◽  
Olivier Dalverny ◽  
Damien Soulat

The first step in the composite manufacturing process consists of forming a flat textile reinforcing structure into a 3D shape. The quality of the final composite part is affected by the presence of defects induced during the forming process. Loss of cohesion in the woven fibre network (intra-ply yarn sliding) is a frequent defect in the forming process. It is expected when the cohesion between the yarns is weak or when the blank holder pressure is high. However, the mechanism of formation of this defect is not fully understood. In the present study, forming experiments with friction-based holder have been conducted for a monolayer twill woven carbon fabric in two orientations and for two plies of this fabric with different relative orientations. The occurrence of the intra-ply yarns sliding has been observed as a function of the blank holder pressure. A correlation between the occurrence of this defect and the fabric orientation has been noticed. Furthermore, the effect of the fabric orientation, number of plies, relative plies orientation and blank holder pressure on the recorded forming force and on the fabric in-plane shear is also reported and analysed.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jianzhang Huang ◽  
Qiang Han

The formation and evolution mechanisms of wrinkling in a rectangular single layer graphene sheet (SLGS) with simply supported boundary subjected to in-plane shear displacements are investigated using molecular dynamics simulations. Through investigating the out-of-plane displacements of the key point atom, we clarify the wrinkling growth and propagation process. Our results show that the boundary condition plays important roles in the wrinkling deformation. And the dependence of wrinkling parameters on the applied shear displacements is captured. Based on the elasticity theory, the formation mechanism of graphene wrinkling is revealed from the viewpoint of elastic energy. The effects of aspect ratio of graphene, temperature, and loading velocity on graphene wrinkling parameters and patterns are also investigated.


Buildings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 146 ◽  
Author(s):  
Jan Niederwestberg ◽  
Jianhui Zhou ◽  
Ying-Hei Chui

The lay-up of cross laminated timber (CLT) leads to significant differences in properties over its cross-section. Particularly the out-of-plane shear behavior of CLT is affected by the changes in shear moduli over the cross-section. Results from laboratory shear tests are used to evaluate the shear stiffness of 3- and 5-layer CLT panels in their major and minor strength direction. The results are compared to calculated shear stiffness values on evaluated single-layer properties as well as commonly used property ratios using the Timoshenko beam theory and the shear analogy method. Differences between the two calculation approaches are pointed out. The shear stiffness is highly sensitive to the ratio of the shear modulus parallel to the grain to the shear modulus perpendicular to the grain. The stiffness values determined from two test measurements are compared with the calculated results. The level of agreement is dependent on the number of layers in CLT and the property axis of the CLT panels.


Author(s):  
Jan Niederwestberg ◽  
Jianhui Zhou ◽  
Ying-Hei Chui

The lay-up of cross laminated timber (CLT) leads to significant differences in properties over its cross-section. Particularly the out-of-plane shear behavior of CLT is effected by the changes in shear moduli over the cross-section. Results from laboratory shear tests are used to evaluate the shear stiffness of 3- and 5-layer CLT panels in their major and minor strength direction. The results are compared to calculated shear stiffness values on evaluated single-layer properties as well as commonly used property ratios using the Timoshenko beam theory and the shear analogy method. Differences between the two calculation approaches are pointed out. The shear stiffness is highly sensitive to the ratio of the shear modulus parallel to the grain to the shear modulus perpendicular to the grain. The stiffness values determined from two test measurements are compared with the calculated results. The level of agreement is dependent on the number of layers in CLT and the property axis of the CLT panels.


Author(s):  
D. J. Colquitt ◽  
I. S. Jones ◽  
N. V. Movchan ◽  
A. B. Movchan ◽  
M. Brun ◽  
...  

Using the framework of transformation optics, this paper presents a detailed analysis of a non-singular square cloak for acoustic, out-of-plane shear elastic and electromagnetic waves. Analysis of wave propagation through the cloak is presented and accompanied by numerical illustrations. The efficacy of the regularized cloak is demonstrated and an objective numerical measure of the quality of the cloaking effect is provided. It is demonstrated that the cloaking effect persists over a wide range of frequencies. As a demonstration of the effectiveness of the regularized cloak, a Young's double slit experiment is presented. The stability of the interference pattern is examined when a cloaked and uncloaked obstacle are successively placed in front of one of the apertures. This novel link with a well-known quantum mechanical experiment provides an additional method through which the quality of cloaks may be examined. In the second half of the paper, it is shown that an approximate cloak may be constructed using a discrete lattice structure. The efficiency of the approximate lattice cloak is analysed and a series of illustrative simulations presented. It is demonstrated that effective cloaking may be obtained by using a relatively simple lattice structure, particularly, in the low-frequency regime.


2013 ◽  
Vol 564 ◽  
pp. 37-40 ◽  
Author(s):  
Balázs Hajgató ◽  
Songül Güryel ◽  
Yves Dauphin ◽  
Jean-Marie Blairon ◽  
Hans E. Miltner ◽  
...  

Author(s):  
Dhruv Singh ◽  
Jayathi Y. Murthy ◽  
Timothy S. Fisher

Using the linearized Boltzmann transport equation and perturbation theory, we analyze the reduction in the intrinsic thermal conductivity of few-layer graphene sheets accounting for all possible three-phonon scattering events. Even with weak coupling between layers, a significant reduction in the thermal conductivity of the out-of-plane acoustic modes is apparent. The main effect of this weak coupling is to open many new three-phonon scattering channels that are otherwise absent in graphene. The highly restrictive selection rule that leads to a high thermal conductivity of ZA phonons in single-layer graphene is only weakly broken with the addition of multiple layers, and ZA phonons still dominate thermal conductivity. We also find that the decrease in thermal conductivity is mainly caused by decreased contributions of the higher-order overtones of the fundamental out-of-plane acoustic mode. Moreover, the extent of reduction is largest when going from single to bilayer graphene and saturates for four layers. The results compare remarkably well over the entire temperature range with measurements of of graphene and graphite.


1995 ◽  
Vol 384 ◽  
Author(s):  
M.C. Kautzky ◽  
B.M. Clemens

ABSTRACTIn this paper we report the successful growth of single-phase epitaxial PtMnSb films and multilayers by dc magnetron cosputtering, both in the (001) orientation on MgO(001) and W(001), and in the (111) orientation on Al2O3 (0001). Single-layer films in the thickness range 50Å≤t≤1000Å were grown and characterized using x-ray diffraction (XRD), magneto-optic Kerr effect (MOKE), and vibrating sample magnetometry (VSM). The in-plane orientation relationships, as determined by asymmetric XRD, were PtMnSb[100]∥MgO[110], PtMnSb[100]∥W[100], and PtMnSb[101∥Al2O3[2110]. The crystalline quality of the films was found to depend strongly upon the substrate, growth temperature, film thickness, and presence of a capping layer, but rocking curve widths of 1° or less were achieved on each substrate. Measurement of the in-plane strain showed that the films were almost entirely relaxed, with strains <1%. In-plane magnetization was observed in all cases, with moments and coercivities in the 400-500 emu/cm3 and 100-200 Oe ranges respectively. Polar Kerr spectra showed large rotations (0.75° - 1.03°), whose peak wavelengths appear to depend on both film structure and optical interference effects.


Sign in / Sign up

Export Citation Format

Share Document