scholarly journals Design of Magnetic Hydrogels for Hyperthermia and Drug Delivery

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4259
Author(s):  
Sayan Ganguly ◽  
Shlomo Margel

Hydrogels are spatially organized hydrophilic polymeric systems that exhibit unique features in hydrated conditions. Among the hydrogel family, composite hydrogels are a special class that are defined as filler-containing systems with some tailor-made properties. The composite hydrogel family includes magnetic-nanoparticle-integrated hydrogels. Magnetic hydrogels (MHGs) show magneto-responsiveness, which is observed when they are placed in a magnetic field (static or oscillating). Because of their tunable porosity and internal morphology they can be used in several biomedical applications, especially diffusion-related smart devices. External stimuli may influence physical and chemical changes in these hydrogels, particularly in terms of volume and shape morphing. One of the most significant external stimuli for hydrogels is a magnetic field. This review embraces a brief overview of the fabrication of MHGs and two of their usages in the biomedical area: drug delivery and hyperthermia-based anti-cancer activity. As for the saturation magnetization imposed on composite MHGs, they are easily heated in the presence of an alternating magnetic field and the temperature increment is dependent on the magnetic nanoparticle concentration and exposure time. Herein, we also discuss the mode of different therapies based on non-contact hyperthermia heating.

2020 ◽  
Vol 192 ◽  
pp. 111068 ◽  
Author(s):  
Kejing Shi ◽  
Rodrigo Aviles-Espinosa ◽  
Elizabeth Rendon-Morales ◽  
Lisa Woodbine ◽  
Mohammed Maniruzzaman ◽  
...  

2020 ◽  
Vol 366 ◽  
pp. 164-174
Author(s):  
Mostafa Varmazyar ◽  
MohammadReza Habibi ◽  
Meysam Amini ◽  
Ahmad Hajatzadeh Pordanjani ◽  
Masoud Afrand ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (32) ◽  
pp. 19604-19610 ◽  
Author(s):  
Xiaofang Qi ◽  
Lu Xiong ◽  
Jing Peng ◽  
Dongyan Tang

One major issue in thermosensitive drug delivery systems is the remote, repeatable control of temperature in vivo through external stimuli such as light, ultrasound, and magnetic field.


RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 37308-37318 ◽  
Author(s):  
Ebadullah Asadi ◽  
Majid Abdouss ◽  
Roger M. Leblanc ◽  
Noushin Ezzati ◽  
James N. Wilson ◽  
...  

The structure of a 5-fluorouracil carrier and fluorescent image of an animal after injection under a magnetic field.


2021 ◽  
Vol 10 (1) ◽  
pp. 933-953
Author(s):  
Baranya Murugan ◽  
Suresh Sagadevan ◽  
Is Fatimah ◽  
Won-Chun Oh ◽  
Mohd Abd Motalib Hossain ◽  
...  

Abstract Nanomedicine is ongoing current research in the applications of nanotechnology for cancer therapy. Simply from a technology perspective, this field of research has an enormous broadening and success to date. Recently, nanomedicine has also made inroads in the treatment of cancer. Stimuli-responsive nanoparticles are an emerging field of research because its targeting capacity is of great interest in the treatment of cancer. The responsive nanoparticles are efficient in encountering different internal biological stimuli (acidic, pH, redox, and enzyme) and external stimuli (temperature, ultrasounds, magnetic field, and light), which are used as smart nanocarriers for delivery of the chemotherapeutic and imaging agents for cancer therapy. In-depth, the responsive nanocarrier that responds to the biological cues is of pronounced interest due to its capability to provide a controlled release profile at the tumor-specific site. The outlook of this review focuses on the stimuli-responsive nanocarrier drug delivery systems in sequence to address the biological challenges that need to be evaluated to overcome conventional cancer therapy.


2014 ◽  
Vol 807 ◽  
pp. 1-12 ◽  
Author(s):  
R. Rajeswari ◽  
R. Jothilakshmi

Magnetic nanoparticles are made up of magnetic elements such as iron, nickel, cobalt and their oxides. Their unique physical and chemical properties, biocompatibility and their ability to be manipulated by external magnetic fields have made them as popular drug carriers in recent years. They offer various advantages such as ability to carry drugs to the desired areas in the body, and the ability to release the drugs in a controlled manner which in turn help in reducing side effects to other organs and in providing correct dosage of drugs. However, the complexity of the drug delivery system is a challenge in further improving the efficiency of magnetic nanoparticle drug delivery. In order to overcome this challenge, computational tools help in understanding the complexity of the drug delivery process and to design magnetic nanoparticles which are more efficient in drug delivery. In this chapter we propose to review various properties of magnetic nanoparticles, applications of magnetic nanoparticles as drug carriers, challenges in using them for drug delivery, various computational tools which aid in modeling magnetic nanoparticle drug delivery and in designing magnetic nanoparticles for efficient targeted drug delivery.


Author(s):  
Manju Rawat ◽  
Swarnlata Saraf

Currently, drug delivery technologies for protein and peptide delivery mainly rely on biodegradable polymers. However, protein stability during release from these systems can be critical due to physical and chemical instabilities. Lipospheres are solid microparticles composed of fat core stabilized by phospholipids layer represent an alternative carrier for the delivery of highly challenging, labile and unstable  substances. This review highlights various aspects of lipospheres like physicochemical characteristics and stability for better clinical utility with a wider spectrum of proteins and peptides.


2018 ◽  
Vol 69 (7) ◽  
pp. 1756-1759 ◽  
Author(s):  
Luminita Confederat ◽  
Iuliana Motrescu ◽  
Sandra Constantin ◽  
Florentina Lupascu ◽  
Lenuta Profire

The aim of this study was to optimize the method used for obtaining microparticles based on chitosan � a biocompatible, biodegradable, and nontoxic polymer, and to characterize the developed systems. Chitosan microparticles, as drug delivery systems were obtained by inotropic gelation method using pentasodiumtripolyphosphate (TPP) as cross-linking agent. Chitosan with low molecular weight (CSLMW) in concentration which ranged between 0.5 and 5 %, was used while the concentration of cross-linking agent ranged between 1 and 5%. The characterization of the microparticles in terms of shape, uniformity and adhesion was performed in solution and dried state. The size of the microparticles and the degree of swelling were also determined. The structure and the morphology of the developed polymeric systems were analyzed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).The average diameter of the chitosan microparticles was around 522 �m. The most stable microparticles were obtained using CSLMW 1% and TPP 2% or CSLMW 0.75%and TPP 1%. The micropaticles were spherical, uniform and without flattening. Using CSLMW in concentration of 0.5 % poorly cross-linked and crushed microparticles have been obtained at all TPP concentrations. By optimization of the method, stable chitosan-based micropaticles were obtained which will be used to develop controlled release systems for drug delivery.


Sign in / Sign up

Export Citation Format

Share Document