Lipospheres: Emerging Carriers in the Delivery of Proteins and Peptides

Author(s):  
Manju Rawat ◽  
Swarnlata Saraf

Currently, drug delivery technologies for protein and peptide delivery mainly rely on biodegradable polymers. However, protein stability during release from these systems can be critical due to physical and chemical instabilities. Lipospheres are solid microparticles composed of fat core stabilized by phospholipids layer represent an alternative carrier for the delivery of highly challenging, labile and unstable  substances. This review highlights various aspects of lipospheres like physicochemical characteristics and stability for better clinical utility with a wider spectrum of proteins and peptides.

2018 ◽  
Vol 13 (1) ◽  
pp. 285-298 ◽  
Author(s):  
Agnieszka Pudlarz ◽  
Janusz Szemraj

AbstractNanoparticles have many applications both in industry and medicine. Depending upon their physical and chemical properties, they can be used as carriers of therapeutic molecules or as therapeutics. Nanoparticles are made of synthetic or natural polymers, lipids or metals. Their use allows for faster transport to the place of action, thus prolonging its presence in the body and limiting side effects. In addition, the use of such a drug delivery system protects the drug from rapid disintegration and elimination from the body. In recent years, the use of proteins and peptides as therapeutic molecules has grown significantly. Unfortunately, proteins are subject to enzymatic digestion and can cause unwanted immune response beyond therapeutic action. The use of drug carriers can minimize undesirable side effects and reduce the dose of medication needed to achieve the therapeutic effect. The current study presents the use of several selected drug delivery systems for the delivery of proteins, peptides and other therapeutic molecules.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 578
Author(s):  
Bilal Harieth Alrimawi ◽  
May Yee Chan ◽  
Xin Yue Ooi ◽  
Siok-Yee Chan ◽  
Choon Fu Goh

Rice starch is a promising biomaterial for thin film development in buccal drug delivery, but the plasticisation and antiplasticisation phenomena from both plasticisers and drugs on the performance of rice starch films are not well understood. This study aims to elucidate the competing effects of sorbitol (plasticiser) and drug (antiplasticiser) on the physicochemical characteristics of rice starch films containing low paracetamol content. Rice starch films were prepared with different sorbitol (10, 20 and 30% w/w) and paracetamol contents (0, 1 and 2% w/w) using the film casting method and were characterised especially for drug release, swelling and mechanical properties. Sorbitol showed a typical plasticising effect on the control rice starch films by increasing film flexibility and by reducing swelling behaviour. The presence of drugs, however, modified both the mechanical and swelling properties by exerting an antiplasticisation effect. This antiplasticisation action was found to be significant at a low sorbitol level or a high drug content. FTIR investigations supported the antiplasticisation action of paracetamol through the disturbance of sorbitol–starch interactions. Despite this difference, an immediate drug release was generally obtained. This study highlights the interplay between plasticiser and drug in influencing the mechanical and swelling characteristics of rice starch films at varying concentrations.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2998
Author(s):  
Mohammed Nadeem Bijle ◽  
Manikandan Ekambaram ◽  
Edward Lo ◽  
Cynthia Yiu

The in vitro study objectives were to investigate the effect of arginine (Arg) incorporation in a 5% sodium fluoride (NaF) varnish on its physical and chemical properties including F/Arg release. Six experimental formulations were prepared with L-arginine (L-Arg) and L-arginine monohydrochloride at 2%, 4%, and 8% w/v in a 5% NaF varnish, which served as a control. The varnishes were subjected to assessments for adhesion, viscosity, and NaF extraction. Molecular dynamics were simulated to identify post-dynamics total energy for NaF=Arg/Arg>NaF/Arg<NaF concentrations. The Arg/F varnish release profiles were determined in polyacrylic lactate buffer (pH-4.5; 7 days) and artificial saliva (pH-7; 1 h, 24 h, and 12 weeks). Incorporation of L-Arg in NaF varnish significantly influences physical properties ameliorating retention (p < 0.001). L-Arg in NaF varnish institutes the Arg-F complex. Molecular dynamics suggests that NaF>Arg concentration denotes the stabilized environment compared to NaF<Arg (p < 0.001). The 2% Arg-NaF exhibits periodic perennial Arg/F release and shows significantly higher integrated mean F release than NaF (p < 0.001). Incorporating 2% L-arginine in 5% NaF varnish improves its physical properties and renders a stable matrix with enduring higher F/Arg release than control.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3610
Author(s):  
Jialin Yu ◽  
Huayu Qiu ◽  
Shouchun Yin ◽  
Hebin Wang ◽  
Yang Li

Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.


2021 ◽  
Vol 27 ◽  
Author(s):  
Bapi Gorain ◽  
Bandar E. Al-Dhubiab ◽  
Anroop Nair ◽  
Prashant Kesharwani ◽  
Manisha Pandey ◽  
...  

: The advancement of delivery tools for therapeutic agents has brought several novel formulations with increased drug loading, sustained release, targeted delivery, and prolonged efficacy. Amongst the several novel delivery approaches, multivesicular liposome has gained potential interest because this delivery system possesses the above advantages. In addition, this multivesicular liposomal delivery prevents degradation of the entrapped drug within the physiological environment while administered. The special structure of the vesicles allowed successful entrapment of hydrophobic and hydrophilic therapeutic agents, including proteins and peptides. Furthermore, this novel formulation could maintain the desired drug concentration in the plasma for a prolonged period, which helps to reduce the dosing frequencies, improve bioavailability, and safety. This tool could also provide stability of the formulation, and finally gaining patient compliance. Several multivesicular liposomes received approval for clinical research, while others are at different stages of laboratory research. In this review, we have focused on the preparation of multivesicular liposomes along with their application in different ailments for the improvement of the performance of the entrapped drug. Moreover, the challenges of delivering multivesicular vesicles have also been emphasized. Overall, it could be inferred that multivesicular liposomal delivery is a novel platform of advanced drug delivery with improved efficacy and safety.


2017 ◽  
Author(s):  
Rohan Dandage ◽  
Rajesh Pandey ◽  
Gopal Jayaraj ◽  
Kausik Chakraborty

AbstractUnder the influence of selection pressures imposed by natural environments, organisms maintain competitive fitness through underlying molecular evolution of individual genes across the genome. For molecular evolution, how multiple interdependent molecular constraints play a role in determination of fitness under different environmental conditions is largely unknown. Here, using Deep Mutational Scanning (DMS), we quantitated empirical fitness of ∼2000 single site mutants of Gentamicin-resistant gene (GmR). This enabled a systematic investigation of effects of different physical and chemical environments on the fitness landscape of the gene. Molecular constraints of the fitness landscapes seem to bear differential strengths in an environment dependent manner. Among them, conformity of the identified directionalities of the environmental selection pressures with known effects of the environments on protein folding proves that along with substrate binding, protein stability is the common strong constraint of the fitness landscape. Our study thus provides mechanistic insights into the molecular constraints that allow accessibility of mutational fates in environment dependent manner.Author SummaryEnvironmental conditions play a central role in both organismal adaptations and underlying molecular evolution. Understanding of environmental effects on evolution of genotype is still lacking a depth of mechanistic insights needed to assist much needed ability to forecast mutational fates. Here, we address this issue by culminating high throughput mutational scanning using deep sequencing. This approach allowed comprehensive mechanistic investigation of environmental effects on molecular evolution. We monitored effects of various physical and chemical environments onto single site mutants of model antibiotic resistant gene. Alongside, to get mechanistic understanding, we identified multiple molecular constraints which contribute to various degrees in determining the resulting survivabilities of mutants. Across all tested environments, we find that along with substrate binding, protein stability stands out as the common strong constraints. Remarkable direct dependence of the environmental fitness effects on the type of environmental alteration of protein folding further proves that protein stability is the major constraint of the gene. So, our findings reveal that under the influence of environmental conditions, mutational fates are channeled by various degrees of strengths of underlying molecular constraints.


2021 ◽  
Author(s):  
Yun Wang ◽  
Peng Xie ◽  
Jiyun She ◽  
Aihua Deng ◽  
Shaogang Fan

Abstract Purpose: Little is known regarding the combined impact of plant and soil traits on the soil bacterial community. Herein, we assessed physical and chemical properties along with bacterial community structure in soils sampled at different depths (0–20 cm, 20–40 cm, and 40–60 cm) and slope positions (peak, hillside, and bottom), in Camellia oleifera monoculture and mixed Gardenia jasminoides–Camellia oleifera stands. Methods: Soil physicochemical characteristics were determined using standard methods. The composition of soil bacterial communities was evaluated using high-throughput sequencing of the 16S rRNA gene. Results: Soil organic carbon, humus, and total organic contents were higher in G. jasminoides + C. oleifera low-yielding forest than in other stands, however, the NH4+-N levels were significantly lower than that in monoculture. The slope position did not greatly influence soil physical and chemical properties. The dominant bacteria were Proteobacteria, Chloroflexi, Acidobacteria, and Actinobacteria. The alpha and beta diversity and abundance of soil bacterial community were higher in intercropping systems than in monoculture systems. Potassium and nitrogen levels and pH significantly affected the soil microbial community composition. Correlation analysis revealed that alkaline hydrolysable nitrogen and pH were significantly correlated with the input of plant-associated organic matter and dynamic changes of keystone taxa.Conclusion: G. jasminoides improved the physicochemical characteristics of C. oleifera low-yielding soil and greatly affected the soil bacterial community, further improving the soil microecological environment. Therefore, this specific intercropping system is an effective strategy for improving soil health.


Sign in / Sign up

Export Citation Format

Share Document