scholarly journals Casein Micelles as Nanocarriers for Benzydamine Delivery

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4357
Author(s):  
Nikolay Zahariev ◽  
Maria Marudova ◽  
Sophia Milenkova ◽  
Yordanka Uzunova ◽  
Bissera Pilicheva

The aim of the present work was to optimize the process parameters of the nano spray drying technique for the formulation of benzydamine-loaded casein nanoparticles and to investigate the effect of some process variables on the structural and morphological characteristics and release behavior. The obtained particles were characterized in terms of particle size and size distribution, surface morphology, production yield and encapsulation efficiency, drug-polymer compatibility, etc., using dynamic light scattering, scanning electron microscopy, differential scanning calorimetry, and Fourier transformed infrared spectroscopy. Production yields of the blank nanoparticles were significantly influenced by the concentration of both casein and the crosslinking agent. The formulated drug-loaded nanoparticles had an average particle size of 135.9 nm to 994.2 nm. Drug loading varied from 16.02% to 57.41% and the encapsulation efficiency was in the range 34.61% to 78.82%. Our study has demonstrated that all the investigated parameters depended greatly on the polymer/drug ratio and the drug release study confirmed the feasibility of the developed nanocarriers for prolonged delivery of benzydamine.

Author(s):  
Sumit Kumar ◽  
Dinesh Chandra Bhatt

Fabrication and evaluation of the Isoniazid loaded sodium alginate nanoparticles (NPs) was main objective of current investigation. These NPs were engineered using ionotropic gelation technique. The NPs fabricated, were evaluated for average particle size, encapsulation efficiency, drug loading, and FTIR spectroscopy along with in vitro drug release. The particle size, drug loading and encapsulation efficiency of fabricated nanoparticles were ranging from 230.7 to 532.1 nm, 5.88% to 11.37% and 30.29% to 59.70% respectively. Amongst all batches studied formulation F-8 showed the best sustained release of drug at the end of 24 hours.


Author(s):  
Xinyuan Wen ◽  
Xiaoqing Huang ◽  
Huosheng Wu

Purpose: To develop a novel intraarticular injection of diclofenac for the treatment of arthritis. Method: Diclofenac loaded nanoparticles were prepared by a nanoprecipitation technique using Eudragit L 100 as the polymer and polyvinyl alcohol as the surfactant. The nanoparticles were evaluated for particle size, zeta potential, scanning electron microscopy, drug release, encapsulation efficiency, and loading efficiency studies. The optimized nanoparticulate formulation was developed for intra articular injection. Intraarticulate injection was evaluated for pH, appearance, viscosity, osmolarity and syringability studies. The optimized injection formulation was tested in an arthritic model consisting of 25 rabbits. Result: Nanoprecipitation method was found to be suitable for diclofenac nanoparticles. The shape of the prepared nanoparticles was found to be spherical and devoid of any cracks and crevices. The average particle size of a diclofenac nanoparticle was found to range from 87±0.47 to 103±0.26 nm. The zeta potential of the prepared nanoparticles was found to be in the range of 0.598±0.34 to 0.826±0.25 mV. The encapsulation efficiency was found to be between 73.45% to 99.03%, while the drug loading was observed between 10.34 to 35.32%. The percentage drug release at 12 hours was found to range from 73.45% to 99.03%. Conclusion: The developed intraarticular injection was found to be within the physically and chemically accepted limits. Animals treated with the intra articular injection of diclofenac showed a significant reduction in swelling as compares to the other groups.


2021 ◽  
Vol 21 (9) ◽  
pp. 4565-4572
Author(s):  
Yongan Chen ◽  
Lei Cheng ◽  
Dan Yu ◽  
Jie Shen ◽  
Zhengrong Zhou ◽  
...  

The objective of this study was to prepare doxorubicin-loaded EGF modified PEG-nanoparticles and evaluate its targeting capability and therapeutic effects with EGFR-expressing hepatocellular carcinoma cells. The morphology, particle size distribution, and doxorubicin content of the nanoparticles were measured, and the drug loading and encapsulation efficiency were calculated. The doxorubicin nanoparticles prepared were regular circular, with good dispersibility, no adhesion, and the average particle size was (136.7±9.3) nm. The average encapsulation efficiency was (76.67±8.63)%, the average drug loading was (3.86±0.55)%; the drug release rate of doxorubicin was 100% for 12 h, and the doxorubicin nanometer was loaded. The drug release rate of the granules was 52.9% at 24 h and 81.2% at 144 h. The inhibition rate of the proliferation of hepatocarcinoma cells by the doxorubicin-containing nanoparticles was slower than that of doxorubicin, and the IC50 of the two cells was 1.844 and 0.345 μg/mL, respectively. At the same time, apoptosis and cycle analysis showed that the doxorubicin nanoparticles could significantly inhibit the cell cycle of hepatoma cells and promote the apoptosis of hepatoma cells. This study successfully produced nanoparticles loaded with doxorubicin targeting EGFR, which has a good sustained release effect, and its antitumor effect is stronger than free doxorubicin.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Meng Luo ◽  
Dandan Zhu ◽  
Juntao Lin ◽  
Xinhua Zhou ◽  
Changge Zheng ◽  
...  

Abstract Background Biological pesticides, especially baculovirus, often lose their activity under the influence of external light, temperature, and other changes. This limited the application of them. The present study was aimed to prolong the biological activity and ensure the efficacy of a biological pesticide using microencapsulation technology. Results In this study, gelatin/carboxymethylcellulose (CMC)-Spodoptera litura nucleopolyhedrovirus microcapsules were prepared. The morphological characteristics, apparent morphology, embedding rate, virus loading, particle size, laboratory virulence, and UV resistance of the microencapsulated virus, were tested. The best conditions for preparing gelatin /CMC-S. litura nucleopolyhedrovirus microcapsules include the gelatin/CMC ratio of 9:1, wall material concentration of 1%, core material/wall ration ratio of 1:2, re-condensation pH of 4.67, and curing time of 1 h. The prepared microcapsules of S. litura nucleopolyhedrovirus exhibited a good external appearance and spherical shapes with an average particle size of 13 μm, an embedding rate of 62.53%, and a drug loading of 43.87%. The virulence test showed that the microencapsulated virus lost by 2.21 times of its initial activity than the untreated virus. After being treated with field exposure, the gelatin/CMC shell of the microcapsule can better protect the virus in the wild environment. Conclusion Microencapsulation improves the tolerance of S. litura nuclear polyhedrosis virus to ultraviolet radiation. These results will provide ideas for the research of stable and efficient baculovirus preparations and further promote the application and promotion of environmental friendly biological pesticides.


2020 ◽  
Vol 27 (22) ◽  
pp. 3623-3656 ◽  
Author(s):  
Bruno Fonseca-Santos ◽  
Patrícia Bento Silva ◽  
Roberta Balansin Rigon ◽  
Mariana Rillo Sato ◽  
Marlus Chorilli

Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.


2011 ◽  
Vol 380 ◽  
pp. 81-84
Author(s):  
Li Ming Zhang ◽  
Xiu Lan Xin ◽  
Wei Jiang

The water-based pigment ink jet emulsion whose particle size was less than 100nm was synthesized by the polymerization of methyl methacrylate, butyl acrylate and ethylhexyl acrylate, and anionic reactive surfactant and nonionic surfactant were used as the emulsifiers. The effects of particle size and water resistance were studied. The glass transition temperature was tested by differential scanning calorimetry. The average particle size of emulsion was range from 60nm to70nm, zeta potential value was less than -60mv; viscosity was 3.5mps; water absorption was 5.9%.


2021 ◽  
Vol 13 (9) ◽  
pp. 1691-1698
Author(s):  
Hongzhe Liu ◽  
Kai Tong ◽  
Ziyi Zhong ◽  
Gang Wang

To explore the effect of hydrogen sulfide (H2S) drug-loaded nanoparticles (H2S-NPs) on the mTOR/STAT3 signaling pathway in rats and its mechanism on repair of spinal cord injury (SCI), a new H2S-NP (G16MPG-ADT) was prepared and synthesized. The rats were selected as the research objects to explore the mechanism of SCI repair. The G16MPG-ADT NPs were evaluated by average particle size (APS), dispersion coefficient (DC), drug loading content (DLC), drug loading efficacy (DLE), in vitro release (IV-R), and acute toxicity (AT). It was found that G16MPG-ADT nanoparticles had a uniform particle size distribution with a unimodal distribution, with an average particle size of 186.5 nm and a dispersion coefficient of 0.129; within the concentration range of 8~56 μg/L, there was a good linear relationship with the peak area; and the release rate of the nanoparticles within 16 h~32 h was higher than 50%. G16MPG-ADT NP injection treatment was performed on rats with SCI. Western blotting (WB) and immunofluorescence staining were adopted to analyze the expression levels of mammalian target of rapamycin (mTOR) and signal transducers and activators of transcription (STAT3) protein and the growth of neurites. It was found that G16MPG-ADT can increase mTOR and STAT3 protein levels and promote nerve growth after SCI. Finally, the Basso, Beattie and Bresnahan locomotor rating (BBB) score was to evaluate the recovery effect of rats after treatment. It was found that the recovery effect was excellent after G16MPG-ADT treatment. In summary, G16MPG-ADT has a good effect on SCI repair in rats and can be promoted in the clinic.


2013 ◽  
Vol 684 ◽  
pp. 57-62 ◽  
Author(s):  
Zhi Hua Xing

Folic acid-chitosan (FA-CTS) and 10-hydroxycamptothecin (HCPT)-loaded folate-conjugated chitosan (FA-CTS/HCPT) microspheres were prepared by the ionic crosslinking method.The morphological characteristics of microspheres were examined using a scanning electron microscope (SEM). The average particle size and size distribution were determined by dynamic light scattering. The drug encapsulation efficiency (EE) , loading capacity (LC)and release characteristics in vitro were determined using ultraviolet spectrophotometer.The results shown that the microspheres are uniform spherical and regular with a size between 19.79 and81.40μm.Optimized preparation parameters lead to the successful preparation of hydroxycamptothecin-loaded folate-conjugated chitosan microspheres characterized with encapsulation efficiency and loading capacity up to (86.8±0.1)% and 20.6±0.3 % respectively. More then 90% of 10-hydroxycamptothecin was released from microspheres in 4 h at artificial gastric juice, 8h at artificial small intestinal fluid with a good delayed release effect.


1990 ◽  
Vol 195 ◽  
Author(s):  
Karl M. Unruh ◽  
B.M. Patterson ◽  
S.I. Shah

ABSTRACTGranular metal films consisting of small Sn, Bi, and Pb particles, typically from less than 100 Å to several 1000 Å in size and embedded in a SiO2 matrix, have been fabricated over a range of metal compositions by RF sputter deposition. Two different film geometries have been prepared, homogeneous films and multilayer films consisting of alternating layers of granular metal and SiO2. These films have been characterized by x-ray diffraction and transmission electron microscopy and their melting behavior studied by differential scanning calorimetry. As the concentration of the metal component is decreased, the average particle size decreases and the particle size distribution becomes more narrow. When the solid-liquid transition is studied, the melting temperature has been found to be increasingly depressed as the particle size is reduced. In the smallest particles the relative reduction in the melting temperature is greater than 10 percent. No strong evidence for melting point enhancements, due to pressureeffects arising from the different thermal expansions of the metal particles and the SiO2 matrix, has been observed in either the homogeneous or multilayer films.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2942
Author(s):  
Zengjia Zhou ◽  
Xiaomeng Sun ◽  
Jianjun Cheng ◽  
Qingfeng Ban ◽  
Mingruo Guo

Panax Notoginseng Saponins (PNS) may be beneficial to human health due to their bioactive function. The application of PNS in functional foods was limited due to the bitter taste and low oral bioavailability. PNS were encapsulated by polymerized whey protein (PWP) nanoparticles. The physicochemical, digestive, and sensory properties of the nanoparticles were investigated. Results showed that the nanoparticles had a particle size of 55 nm, the zeta potential of −28 mV, and high PNS encapsulation efficiency (92.94%) when the mass ratio of PNS to PWP was 1:30. Differential Scanning Calorimetry (DSC) results revealed that PNS were successfully encapsulated by PWP. The mainly intermolecular forces between PNS and PWP were hydrogen bonding and electrostatic attraction confirmed by Fourier Transform Infrared Spectroscopy (FTIR). Results of simulated gastrointestinal digestion indicated that the PNS-PWP (1:30) nanoparticles had smaller average particle size (36 nm) after treatment with gastric fluids and increased particle size (75 nm) after treatment with intestinal fluids. Transmission Electron Microscopy (TEM) micrographs reflected that the nanoparticles had irregular spherical structures. The encapsulated PNS exhibited significantly (p < 0.05) decreased bitterness compared to the non-encapsulated PNS confirmed by the electronic tongue. The results indicated that encapsulation of PNS with PWP could facilitate their application in functional foods.


Sign in / Sign up

Export Citation Format

Share Document