scholarly journals Progressing Ultragreen, Energy-Efficient Biobased Depolymerization of Poly(ethylene terephthalate) via Microwave-Assisted Green Deep Eutectic Solvent and Enzymatic Treatment

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 109
Author(s):  
Olivia A. Attallah ◽  
Muhammad Azeem ◽  
Efstratios Nikolaivits ◽  
Evangelos Topakas ◽  
Margaret Brennan Fournet

Effective interfacing of energy-efficient and biobased technologies presents an all-green route to achieving continuous circular production, utilization, and reproduction of plastics. Here, we show combined ultragreen chemical and biocatalytic depolymerization of polyethylene terephthalate (PET) using deep eutectic solvent (DES)-based low-energy microwave (MW) treatment followed by enzymatic hydrolysis. DESs are emerging as attractive sustainable catalysts due to their low toxicity, biodegradability, and unique biological compatibility. A green DES with triplet composition of choline chloride, glycerol, and urea was selected for PET depolymerization under MW irradiation without the use of additional depolymerization agents. Treatment conditions were studied using Box-Behnken design (BBD) with respect to MW irradiation time, MW power, and volume of DES. Under the optimized conditions of 20 mL DES volume, 260 W MW power, and 3 min MW time, a significant increase in the carbonyl index and PET percentage weight loss was observed. The combined MW-assisted DES depolymerization and enzymatic hydrolysis of the treated PET residue using LCC variant ICCG resulted in a total monomer conversion of ≈16% (w/w) in the form of terephthalic acid, mono-(2-hydroxyethyl) terephthalate, and bis-(2-hydroxyethyl) terephthalate. Such high monomer conversion in comparison to enzymatically hydrolyzed virgin PET (1.56% (w/w)) could be attributed to the recognized depolymerization effect of the selected DES MW treatment process. Hence, MW-assisted DES technology proved itself as an efficient process for boosting the biodepolymerization of PET in an ultrafast and eco-friendly manner.

2018 ◽  
Vol 152 ◽  
pp. 01014 ◽  
Author(s):  
Yoon Li Wan ◽  
Yuen Jun Mun

Before the conversion of lignocellulosic biomass into fuel such as ethanol, the biomass needs to be pretreated and the yield of ethanol is highly dependent on the pretreatment efficiency. This study investigate the performance of deep eutectic solvent (DES) in pretreating sago waste which is a type of starchy biomass. The suitable type of DES in sago waste pretreatment was selected based on three criteria, which is the structural characteristic, the sugar yield during enzymatic hydrolysis and the amount of sugar loss during pretreatment. In this study, three types of DES namely Choline Chloride-Urea (ChCl-Urea), Choline Chloride-Citric acid (ChCl-CA) and Choline Chloride-Glycerol (ChCl-Glycerol) was investigated. The effect of temperature and duration on DES pretreatment was also investigated. All DES reagents were able to disrupt the structure and increase the porosity of sago waste during pretreatment. ChCl-Urea was selected in this study as it shows apparent structural disruption as examined under Scanning Electron Microscope (SEM). The highest glucose yield of 5.2 mg/mL was derived from enzymatic hydrolysis of ChCl-Urea pretreated sago waste. Moreover, reducing sugar loss during ChCl-Urea pretreatment was low, with only 0.8 mg/mL recorded. The most suitable temperature and duration for ChCl-Urea pretreatment is at 110°C and 3 hr. In a nutshell, the application of DES in pretreatment is feasible and other aspects such as the biodegradability and recyclability of DES is worth investigating to improve the economic feasibility of this pretreatment technique.


Author(s):  
Seong Chan Lee ◽  
Hyeon Woo Oh ◽  
Hee Chul Woo ◽  
Young Han Kim

AbstractBioethanol is commonly recovered from fermentation broth via distillation because it is the most economical and reliable process for large-scale industrial operations. Because extraction is a highly energy-efficient process applicable to low-composition bio-product separation, high-performance solvents are necessary for efficient bioethanol recovery. 2-Methyl pentanol, a branched long-chain alcohol, which was used as the extraction solvent, and a deep eutectic solvent, choline chloride and ethylene glycol (1:2), was employed as an entrainer for product refinement. Thermodynamic models of vapor–liquid equilibrium (VLE) and liquid–liquid equilibrium (LLE) systems were derived using molecular simulations and experimental results to develop the bioethanol extraction and refinement processes. The heat duty of the designed process was reduced by a quarter compared to that of previous recovery processes. Graphic abstract


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6313-6341
Author(s):  
Shuhaida Harun ◽  
Aqilah Mohd Tajuddin ◽  
Azuan Abdul Latif ◽  
Safa Senan Mahmod ◽  
Mohd Shaiful Sajab ◽  
...  

This work aimed to comprehensively examine the pretreatment efficiency of oil palm empty fruit bunches (EFB) using two different types of deep eutectic solvent (DES) mixtures, i.e., choline chloride/imidazole (DES-I) and choline chloride/glycerol (DES-G) in terms of pretreated EFB structural composition and enzymatic hydrolysis. The influence of the pretreatment temperature (55 °C, 90 °C, 125 °C, 160 °C, and 195 °C), EFB to solvent ratio (1:5, 1:10, 1:15, and 1:20), and pretreatment time (2 h, 4 h, and 6 h) on the performance of pretreated EFB and the generated black liquor was examined. The optimal conditions for EFB pretreatment were 160 °C, 1:5 ratio, and 2 h using DES-I solvent, and 160 °C, 1:10 ratio and 4 h using DES-G solvent. The structural carbohydrates of empty fruit bunch pretreated with DES-I, DES-I EFB1 and DES-G, DES-G EFB2 increased to 66.1%, and 64.6%, respectively. The enzymatic hydrolysis of DES-I EFB1 resulted in higher glucan conversion (92.4%) compared to DES-G EFB2, indicating that DES-I solvent was more efficient than DES-G for EFB pretreatment. X-ray diffraction, Fourier transform infrared spectroscopy, and variable-pressure scanning electron microscopy confirmed the removal of lignin and hemicelluloses from EFB during pretreatment and enzymatic hydrolysis.


2016 ◽  
Vol 12 ◽  
pp. 1-4 ◽  
Author(s):  
David O. Oseguera-Galindo ◽  
Roberto Machorro-Mejia ◽  
Nina Bogdanchikova ◽  
Josue D. Mota-Morales

2021 ◽  
Vol 60 (5) ◽  
pp. 2011-2026
Author(s):  
Eng Kein New ◽  
Ta Yeong Wu ◽  
Khai Shing Voon ◽  
Alessandra Procentese ◽  
Katrina Pui Yee Shak ◽  
...  

2021 ◽  
Vol 326 ◽  
pp. 124696
Author(s):  
Chen Huang ◽  
Yunni Zhan ◽  
Jinyuan Cheng ◽  
Jia Wang ◽  
Xianzhi Meng ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chiranjeevi Thulluri ◽  
Ravi Balasubramaniam ◽  
Harshad Ravindra Velankar

AbstractCellulolytic enzymes can readily access the cellulosic component of lignocellulosic biomass after the removal of lignin during biomass pretreatment. The enzymatic hydrolysis of cellulose is necessary for generating monomeric sugars, which are then fermented into ethanol. In our study, a combination of a deep eutectic (DE) mixture (of 2-aminoethanol and tetra-n-butyl ammonium bromide) and a cyclic ether (tetrahydrofuran) was used for selective delignification of rice straw (RS) under mild conditions (100 °C). Pretreatment with DE-THF solvent system caused ~ 46% delignification whereas cellulose (~ 91%) and hemicellulose (~ 67%) recoveries remained higher. The new solvent system could be reused upto 10 subsequent cycles with the same effectivity. Interestingly, the DE-THF pretreated cellulose showed remarkable enzymatic hydrolysability, despite an increase in its crystallinity to 72.3%. Contrary to conventional pretreatments, we report for the first time that the enzymatic hydrolysis of pretreated cellulose is enhanced by the removal of lignin during DE-THF pretreatment, notwithstanding an increase in its crystallinity. The current study paves way for the development of newer strategies for biomass depolymerization with DES based solvents.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1170
Author(s):  
Yuan Zhu ◽  
Benkun Qi ◽  
Xinquan Liang ◽  
Jianquan Luo ◽  
Yinhua Wan

Herein, corn stover (CS) was pretreated by less corrosive lewis acid FeCl3 acidified solutions of neat and aqueous deep eutectic solvent (DES), aqueous ChCl and glycerol at 120 °C for 4 h with single FeCl3 pretreatment as control. It was unexpected that acidified solutions of both ChCl and glycerol were found to be more efficient at removing lignin and xylan, leading to higher enzymatic digestibility of pretreated CS than acidified DES. Comparatively, acidified ChCl solution exhibited better pretreatment performance than acidified glycerol solution. In addition, 20 wt% water in DES dramatically reduced the capability of DES for delignification and xylan removal and subsequent enzymatic cellulose saccharification of pretreated CS. Correlation analysis showed that enzymatic saccharification of pretreated CS was highly correlated to delignification and cellulose crystallinity, but lowly correlated to xylan removal. Recyclability experiments of different acidified pretreatment solutions showed progressive decrease in the pretreatment performance with increasing recycling runs. After four cycles, the smallest decrease in enzymatic cellulose conversion (22.07%) was observed from acidified neat DES pretreatment, while the largest decrease (43.80%) was from acidified ChCl pretreatment. Those findings would provide useful information for biomass processing with ChCl, glycerol and ChCl-glycerol DES.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2149
Author(s):  
Chan-Woo Park ◽  
Song-Yi Han ◽  
Rajkumar Bandi ◽  
Ramakrishna Dadigala ◽  
Eun-Ah Lee ◽  
...  

In this study, the effect of lignin esterification with fatty acid chloride on the properties of lignin and lignin/poly(lactic acid) (PLA) composites was investigated. Lignocellulose (Pinus densiflora S. et Z.) was treated using a deep eutectic solvent (DES) with choline chloride (ChCl)/lactic acid (LA). From the DES-soluble fraction, DES-lignin (DL) was isolated by a regeneration process. Lignin esterification was conducted with palmitoyl chloride (PC). As the PC loading increased for DL esterification, the Mw of esterified DL (EDL) was increased, and the glass transition temperature (Tg) was decreased. In DL or EDL/PLA composite films, it was observed that EDL/PLA had cleaner and smoother morphological characteristics than DL/PLA. The addition of DL or EDL in a PLA matrix resulted in a deterioration of tensile properties as compared with neat PLA. The EDL/PLA composite film had a higher tensile strength and elastic modulus than the DL/PLA composite film. DL esterification decreased water absorption with lower water diffusion coefficients. The effect of lignin esterification on improving the compatibility of lignin and PLA was demonstrated. These results are expected to contribute to the development of high-strength lignin composites.


Sign in / Sign up

Export Citation Format

Share Document