scholarly journals Hybrid Grey Wolf Optimization-Based Gaussian Process Regression Model for Simulating Deterioration Behavior of Highway Tunnel Components

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Eslam Mohammed Abdelkader ◽  
Abobakr Al-Sakkaf ◽  
Nehal Elshaboury ◽  
Ghasan Alfalah

Highway tunnels are one of the paramount infrastructure systems that affect the welfare of communities. They are vulnerable to higher limits of deterioration, yet there are limited available funds for maintenance and rehabilitation. This state of circumstances entails the development of a deterioration model to forecast the performance condition behavior of critical tunnel elements. Accordingly, this research paper proposes an integrated deterioration prediction model for five highway tunnel elements, namely, cast-in-place tunnel liners, concrete interior walls, concrete portal, concrete ceiling slab, and concrete slab on grade. The developed deterioration model is envisioned in two fundamental components, which are model calibration and model assessment. In the first component, an integrated model of Gaussian process regression and a grey wolf optimization algorithm (GWO-GPR) is introduced for deterioration behavior prediction of highway tunnel elements. In this regard, the grey wolf optimizer is exploited to improve the prediction accuracies of the Gaussian process through optimal estimation of its hyper parameters and to automatically interpret the significant deterioration factors. The second component involves three tiers of performance evaluation comparison, statistical significance comparisons, and consolidated ranking to assess the prediction accuracies of the developed GWO-GPR model. In this regard, the developed model is validated against six widely acknowledged machine learning models, which are back-propagation artificial neural network, Elman neural network, cascade forward neural network, generalized regression neural network, support vector machines, and regression tree. Results demonstrate that the developed GWO-GPR model significantly outperformed other deterioration prediction models in the five tunnel elements. In cast-in-place tunnel liners it accomplished a mean absolute percentage error, mean absolute error, root mean square percentage error, root relative squared error, and relative absolute error of 1.65%, 0.018, 0.21%, 0.018, and 0.147, respectively. In this context, it was inferred that the developed GWO-GPR model managed to reduce the prediction errors of the back-propagation artificial neural network, Elman neural network, and support vector machines by 84.71%, 76.91%, and 69.6%, respectively. It can be concluded that the developed deterioration model can assist transportation agencies in creating timely and cost-efficient maintenance schedules of highway tunnels.

Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 85 ◽  
Author(s):  
Jiefeng Liu ◽  
Hanbo Zheng ◽  
Yiyi Zhang ◽  
Xin Li ◽  
Jiake Fang ◽  
...  

A solution for forecasting the dissolved gases in oil-immersed transformers has been proposed based on the wavelet technique and least squares support vector machine. In order to optimize the hyper-parameters of the constructed wavelet LS-SVM regression, the imperialist competition algorithm was then applied. In this study, the assessment of prediction performance is based on the squared correlation coefficient and mean absolute percentage error methods. According to the proposed method, this novel procedure was applied to a simulated case and the experimental results show that the dissolved gas contents could be accurately predicted using this method. Besides, the proposed approach was compared to other prediction methods such as the back propagation neural network, the radial basis function neural network, and generalized regression neural network. By comparison, it was inferred that this method is more effective than previous forecasting methods.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2976 ◽  
Author(s):  
Qinkai Han ◽  
Hao Wu ◽  
Tao Hu ◽  
Fulei Chu

Accurate wind speed forecasting is a significant factor in grid load management and system operation. The aim of this study is to propose a framework for more precise short-term wind speed forecasting based on empirical mode decomposition (EMD) and hybrid linear/nonlinear models. Original wind speed series is decomposed into a finite number of intrinsic mode functions (IMFs) and residuals by using the EMD. Several popular linear and nonlinear models, including autoregressive integrated moving average (ARIMA), support vector machine (SVM), random forest (RF), artificial neural network with back propagation (BP), extreme learning machines (ELM) and convolutional neural network (CNN), are utilized to study IMFs and residuals, respectively. An ensemble forecast for the original wind speed series is then obtained. Various experiments were conducted on real wind speed series at four wind sites in China. The performance and robustness of various hybrid linear/nonlinear models at two time intervals (10 min and 1 h) are compared comprehensively. It is shown that the EMD based hybrid linear/nonlinear models have better accuracy and more robust performance than the single models with/without EMD. Among the five hybrid models, EMD-ARIMA-RF has the best accuracy on the whole for 10 min data, and the mean absolute percentage error (MAPE) is less than 0.04. However, for the 1 h data, no model can always perform well on the four datasets, and the MAPE is around 0.15.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3261 ◽  
Author(s):  
Solomon Asante-Okyere ◽  
Chuanbo Shen ◽  
Yao Yevenyo Ziggah ◽  
Mercy Moses Rulegeya ◽  
Xiangfeng Zhu

In this paper, a new predictive model based on Gaussian process regression (GPR) that does not require iterative tuning of user-defined model parameters has been proposed to determine reservoir porosity and permeability. For this purpose, the capability of GPR was appraised statistically for predicting porosity and permeability of the southern basin of the South Yellow Sea using petrophysical well log data. Generally, the performance of GPR is deeply reliant on the type covariance function utilized. Therefore, to obtain the optimal GPR model, five different kernel functions were tested. The resulting optimal GPR model consisted of the exponential covariance function, which produced the highest correlation coefficient (R) of 0.85 and the least root mean square error (RMSE) of 0.037 and 6.47 for porosity and permeability, respectively. Comparison was further made with benchmark methods involving a back propagation neural network (BPNN), generalized regression neural network (GRNN), and radial basis function neural network (RBFNN). The statistical findings revealed that the proposed GPR is a powerful technique and can be used as a supplement to the widely used artificial neural network methods. In terms of computational speed, the GPR technique was computationally faster than the BPNN, GRNN, and RBFNN methods in estimating reservoir porosity and permeability.


2021 ◽  
Vol 11 (9) ◽  
pp. 4055
Author(s):  
Mahdi S. Alajmi ◽  
Abdullah M. Almeshal

Machining process data can be utilized to predict cutting force and optimize process parameters. Cutting force is an essential parameter that has a significant impact on the metal turning process. In this study, a cutting force prediction model for turning AISI 4340 alloy steel was developed using Gaussian process regression (GPR), support vector machines (SVM), and artificial neural network (ANN) methods. The GPR simulations demonstrated a reliable prediction of surface roughness for the dry turning method with R2 = 0.9843, MAPE = 5.12%, and RMSE = 1.86%. Performance comparisons between GPR, SVM, and ANN show that GPR is an effective method that can ensure high predictive accuracy of the cutting force in the turning of AISI 4340.


2018 ◽  
Vol 12 (4) ◽  
pp. 294-300 ◽  
Author(s):  
Santhosh K. Venkata ◽  
Bhagya R. Navada

Abstract In this paper, implementation of soft sensing technique for measurement of fluid flow rate is reported. The objective of the paper is to design an estimator to physically measure the flow in pipe by analysing the vibration on the walls of the pipe. Commonly used head type flow meter causes obstruction to the flow and measurement would depend on the placement of these sensors. In the proposed technique vibration sensor is bonded on the pipe of liquid flow. It is observed that vibration in the pipe varies with the control action of stem. Single axis accelerometer is used to acquire vibration signal from pipe, signal is passed from the sensor to the system for processing. Basic techniques like filtering, amplification, and Fourier transform are used to process the signal. The obtained transform is trained using neural network algorithm to estimate the fluid flow rate. Artificial neural network is designed using back propagation with artificial bee colony algorithm. Designed estimator after being incorporated in practical setup is subjected to test and the result obtained shows successful estimation of flow rate with the root mean square percentage error of 0.667.


Sign in / Sign up

Export Citation Format

Share Document